Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10953/3465
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMansour, Shaza H.-
dc.contributor.authorAzzam, Sarah M.-
dc.contributor.authorHasanien, Hany M.-
dc.contributor.authorTostado-Véliz, Marcos-
dc.contributor.authorAlkuhayli, Abdulaziz-
dc.contributor.authorJurado, Francisco-
dc.date.accessioned2024-12-04T13:12:25Z-
dc.date.available2024-12-04T13:12:25Z-
dc.date.issued2024-10-
dc.identifier.citationShaza H. Mansour, Sarah M. Azzam, Hany M. Hasanien, Marcos Tostado-Veliz, Abdulaziz Alkuhayli, Francisco Jurado, Wasserstein generative adversarial networks-based photovoltaic uncertainty in a smart home energy management system including battery storage devices, Energy, Volume 306, 2024, 132412, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2024.132412.es_ES
dc.identifier.issn0360-5442es_ES
dc.identifier.other10.1016/j.energy.2024.132412es_ES
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0360544224021868es_ES
dc.identifier.urihttps://hdl.handle.net/10953/3465-
dc.description.abstractRooftop photovoltaic (PV) power generation uncertainty is one of the prominent challenges in smart homes. Home Energy Management (HEM) systems are essential for appliance and Energy Storage System (ESS) scheduling in these homes, enabling efficient usage of the installed PV panels' power. In this context, effective solar power scenario generation is crucial for HEM load and ESS scheduling with the objective of electricity bill cost reduction. This paper proposes a two-step approach, where a machine learning technique, Wasserstein Generative Adversarial Networks (WGANs), is used for PV scenario generation. Then, the generated scenarios are used as input for the HEM system scheduler to achieve the goal of cost minimization. The generated solar energy scenarios are considered in a single household case study to test the presented method's effectiveness. The WGAN scenarios are evaluated using different metrics and are compared with the scenarios generated by Monte Carlo simulation. The results prove that WGANs generate realistic solar scenarios, which are then used as input to a Mixed Integer Linear Programming (MILP) problem aiming for electricity bill minimization. A 41.5% bill reduction is achieved in the presented case study after scheduling both the load and ESS, with PV fluctuations taken into account, compared to the case where no scheduling, PV, or ESS are considered.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofEnergy [2024]; [306]: [132412]es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectBattery storageses_ES
dc.subjectHome energy managementes_ES
dc.subjectMachine learninges_ES
dc.subjectOptimizationes_ES
dc.subjectPhotovoltaices_ES
dc.subjectSmart gridses_ES
dc.subjectWasserstein generative adversarial networkses_ES
dc.titleWasserstein generative adversarial networks-based photovoltaic uncertainty in a smart home energy management system including battery storage deviceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES
Aparece en las colecciones: DIE-Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Revised Energy paper.pdf2,23 MBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons
Creative Commons