RUJA: Repositorio Institucional de Producción Científica

 

Wasserstein generative adversarial networks-based photovoltaic uncertainty in a smart home energy management system including battery storage devices

dc.contributor.authorMansour, Shaza H.
dc.contributor.authorAzzam, Sarah M.
dc.contributor.authorHasanien, Hany M.
dc.contributor.authorTostado-Véliz, Marcos
dc.contributor.authorAlkuhayli, Abdulaziz
dc.contributor.authorJurado, Francisco
dc.date.accessioned2024-12-04T13:12:25Z
dc.date.available2024-12-04T13:12:25Z
dc.date.issued2024-10
dc.description.abstractRooftop photovoltaic (PV) power generation uncertainty is one of the prominent challenges in smart homes. Home Energy Management (HEM) systems are essential for appliance and Energy Storage System (ESS) scheduling in these homes, enabling efficient usage of the installed PV panels' power. In this context, effective solar power scenario generation is crucial for HEM load and ESS scheduling with the objective of electricity bill cost reduction. This paper proposes a two-step approach, where a machine learning technique, Wasserstein Generative Adversarial Networks (WGANs), is used for PV scenario generation. Then, the generated scenarios are used as input for the HEM system scheduler to achieve the goal of cost minimization. The generated solar energy scenarios are considered in a single household case study to test the presented method's effectiveness. The WGAN scenarios are evaluated using different metrics and are compared with the scenarios generated by Monte Carlo simulation. The results prove that WGANs generate realistic solar scenarios, which are then used as input to a Mixed Integer Linear Programming (MILP) problem aiming for electricity bill minimization. A 41.5% bill reduction is achieved in the presented case study after scheduling both the load and ESS, with PV fluctuations taken into account, compared to the case where no scheduling, PV, or ESS are considered.es_ES
dc.identifier.citationShaza H. Mansour, Sarah M. Azzam, Hany M. Hasanien, Marcos Tostado-Veliz, Abdulaziz Alkuhayli, Francisco Jurado, Wasserstein generative adversarial networks-based photovoltaic uncertainty in a smart home energy management system including battery storage devices, Energy, Volume 306, 2024, 132412, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2024.132412.es_ES
dc.identifier.issn0360-5442es_ES
dc.identifier.other10.1016/j.energy.2024.132412es_ES
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0360544224021868es_ES
dc.identifier.urihttps://hdl.handle.net/10953/3465
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofEnergy [2024]; [306]: [132412]es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectBattery storageses_ES
dc.subjectHome energy managementes_ES
dc.subjectMachine learninges_ES
dc.subjectOptimizationes_ES
dc.subjectPhotovoltaices_ES
dc.subjectSmart gridses_ES
dc.subjectWasserstein generative adversarial networkses_ES
dc.titleWasserstein generative adversarial networks-based photovoltaic uncertainty in a smart home energy management system including battery storage deviceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Revised Energy paper.pdf
Tamaño:
2.18 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones