RUJA: Repositorio Institucional de Producción Científica

 

Solution of Probabilistic Optimal Power Flow Incorporating Renewable Energy Uncertainty Using a Novel Circle Search Algorithm

dc.contributor.authorShaheen, Mohamed A.M.
dc.contributor.authorUllah, Zia
dc.contributor.authorQais, Mohamed H.
dc.contributor.authorHasanien, Hany M.
dc.contributor.authorChua, Kian J.
dc.contributor.authorTostado-Véliz, Marcos
dc.contributor.authorTurky, Rania A.
dc.contributor.authorJurado, Francisco
dc.contributor.authorElkadeem, Mohamed R.
dc.date.accessioned2024-12-04T13:11:07Z
dc.date.available2024-12-04T13:11:07Z
dc.date.issued2022-11-07
dc.description.abstractIntegrating renewable energy sources (RESs) into modern electric power systems offers various techno-economic benefits. However, the inconsistent power profile of RES influences the power flow of the entire distribution network, so it is crucial to optimize the power flow in order to achieve stable and reliable operation. Therefore, this paper proposes a newly developed circle search algorithm (CSA) for the optimal solution of the probabilistic optimal power flow (OPF). Our research began with the development and evaluation of the proposed CSA. Firstly, we solved the OPF problem to achieve minimum generation fuel costs; this used the classical OPF. Then, the newly developed CSA method was used to deal with the probabilistic power flow problem effectively. The impact of the intermittency of solar and wind energy sources on the total generation costs was investigated. Variations in the system’s demands are also considered in the probabilistic OPF problem scenarios. The proposed method was verified by applying it to the IEEE 57-bus and the 118-bus test systems. This study’s main contributions are to test the newly developed CSA on the OPF problem to consider stochastic models of the RESs, providing probabilistic modes to represent the RESs. The robustness and efficiency of the proposed CSA in solving the probabilistic OPF problem are evaluated by comparing it with other methods, such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and the hybrid machine learning and transient search algorithm (ML-TSO) under the same parameters. The comparative results showed that the proposed CSA is robust and applicable; as evidence, an observable decrease was obtained in the costs of the conventional generators’ operation, due to the penetration of renewable energy sources into the studied networks.es_ES
dc.identifier.citationShaheen, M.A.M.; Ullah, Z.; Qais, M.H.; Hasanien, H.M.; Chua, K.J.; Tostado-Véliz, M.; Turky, R.A.; Jurado, F.; Elkadeem, M.R. Solution of Probabilistic Optimal Power Flow Incorporating Renewable Energy Uncertainty Using a Novel Circle Search Algorithm. Energies 2022, 15, 8303. https://doi.org/10.3390/en15218303es_ES
dc.identifier.issn1996-1073es_ES
dc.identifier.other10.3390/en15218303es_ES
dc.identifier.urihttps://www.mdpi.com/1996-1073/15/21/8303es_ES
dc.identifier.urihttps://hdl.handle.net/10953/3454
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.ispartofEnergies [2022]; [15]: [8303]es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectOptimizationes_ES
dc.subjectProbabilistic OPFes_ES
dc.subjectSolar energyes_ES
dc.subjectWind energyes_ES
dc.subjectCircle search algorithmes_ES
dc.titleSolution of Probabilistic Optimal Power Flow Incorporating Renewable Energy Uncertainty Using a Novel Circle Search Algorithmes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
energies-15-08303.pdf
Tamaño:
4.7 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones