RUJA: Repositorio Institucional de Producción Científica

 

Optimal allocation of renewable DGs using artificial hummingbird algorithm under uncertainty conditions

dc.contributor.authorRamadan, Ashraf
dc.contributor.authorEbeed, Mohamed
dc.contributor.authorKamel, Salah
dc.contributor.authorAhmed, Emad M.
dc.contributor.authorTostado-Véliz, Marcos
dc.date.accessioned2024-12-18T11:44:25Z
dc.date.available2024-12-18T11:44:25Z
dc.date.issued2023-03
dc.description.abstractRenewable distributed generators (RDGs) have been widely used in distribution networks for technological, economic, and environmental reasons. The main concern with renewable-based distributed generators, particularly photovoltaic and wind systems, is their intermittent nature, which causes output power to fluctuate, increasing power system uncertainty. As a result, it's critical to think about the resource's uncertainty when deciding where it should go in the grid. The main innovation of this paper is proposing an efficient and the most recent technique for optimal sizing and placement of the RDGs in radial distribution systems considering the uncertainties of the loading and RDGs output powers. Monte-Carlo simulation approach and backward reduction algorithm are used to generate 12 scenarios to model the uncertainties of loading and RDG output power. The artificial hummingbird algorithm (AHA), which is considered the most recent and efficient technique, is used to determine the RDG ratings and placements for a multi-objective function that includes minimizing expected total cost, the expected total emissions, and the expected total voltage deviation, as well as improving expected total voltage stability with considering the uncertainties of loading and RDGs output powers. The proposed technique is tested using an IEEE 33-bus network and an actual distribution system in Portugal (94-bus network). Simulations show that the suggested method effectively solves the problem of optimal DG allocation. In addition of that the expected costs, the emissions, the voltage deviation, are reduced considerably and the voltage stability is also enhanced with inclusion of RDGs in the tested systems.es_ES
dc.identifier.citationAshraf Ramadan, Mohamed Ebeed, Salah Kamel, Emad M. Ahmed, Marcos Tostado-Véliz, Optimal allocation of renewable DGs using artificial hummingbird algorithm under uncertainty conditions, Ain Shams Engineering Journal, Volume 14, Issue 2, 2023, 101872, ISSN 2090-4479, https://doi.org/10.1016/j.asej.2022.101872.es_ES
dc.identifier.issn2090-4479es_ES
dc.identifier.other10.1016/j.asej.2022.101872es_ES
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S2090447922001836es_ES
dc.identifier.urihttps://hdl.handle.net/10953/3591
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofAin Shams Engineering Journal [2023]; [14]: [101872]es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectUncertaintieses_ES
dc.subjectArtificial hummingbird algorithmes_ES
dc.subjectBackward reduction algorithmes_ES
dc.subjectMonte-Carlo simulationes_ES
dc.subjectRenewable Energyes_ES
dc.subjectWindes_ES
dc.subjectSolares_ES
dc.titleOptimal allocation of renewable DGs using artificial hummingbird algorithm under uncertainty conditionses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Paper_March 2022.pdf
Tamaño:
1.04 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones