Optimal allocation of renewable DGs using artificial hummingbird algorithm under uncertainty conditions
Archivos
Fecha
2023-03
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Resumen
Renewable distributed generators (RDGs) have been widely used in distribution networks for technological, economic, and environmental reasons. The main concern with renewable-based distributed generators, particularly photovoltaic and wind systems, is their intermittent nature, which causes output power to fluctuate, increasing power system uncertainty. As a result, it's critical to think about the resource's uncertainty when deciding where it should go in the grid. The main innovation of this paper is proposing an efficient and the most recent technique for optimal sizing and placement of the RDGs in radial distribution systems considering the uncertainties of the loading and RDGs output powers. Monte-Carlo simulation approach and backward reduction algorithm are used to generate 12 scenarios to model the uncertainties of loading and RDG output power. The artificial hummingbird algorithm (AHA), which is considered the most recent and efficient technique, is used to determine the RDG ratings and placements for a multi-objective function that includes minimizing expected total cost, the expected total emissions, and the expected total voltage deviation, as well as improving expected total voltage stability with considering the uncertainties of loading and RDGs output powers. The proposed technique is tested using an IEEE 33-bus network and an actual distribution system in Portugal (94-bus network). Simulations show that the suggested method effectively solves the problem of optimal DG allocation. In addition of that the expected costs, the emissions, the voltage deviation, are reduced considerably and the voltage stability is also enhanced with inclusion of RDGs in the tested systems.
Descripción
Palabras clave
Uncertainties, Artificial hummingbird algorithm, Backward reduction algorithm, Monte-Carlo simulation, Renewable Energy, Wind, Solar
Citación
Ashraf Ramadan, Mohamed Ebeed, Salah Kamel, Emad M. Ahmed, Marcos Tostado-Véliz, Optimal allocation of renewable DGs using artificial hummingbird algorithm under uncertainty conditions, Ain Shams Engineering Journal, Volume 14, Issue 2, 2023, 101872, ISSN 2090-4479, https://doi.org/10.1016/j.asej.2022.101872.