Please use this identifier to cite or link to this item:
https://hdl.handle.net/10953/3825
Title: | Optimal sliding mode control for frequency stabilization of hybrid renewable energy systems |
Authors: | Elsaied, Mohamed M. Hameed, Walid H. Abdel Hasanien, Hany M. Tostado-Véliz, Marcos Al-Ammar, Essam A. Jurado, Francisco |
Abstract: | The constant changes in the load power lead permanently to a power mismatch between the power generation and the power consumption. So, the system frequency due to the power imbalance deviates from the nominal value. Consequently, a control loop should be implemented to stabilize the system frequency whenever a load change occurs. This paper presents a new super-twisting sliding mode control methodology for obtaining an optimal frequency performance in a multi-pool system. The paper presents a three-pool system for frequency deviation problems using an optimal gain Super Twisting Sliding Mode Controller (STSMC), which regulates the frequency change and the line power change to zero in a minimal time. The extent of the excellence of the study proposed is evaluated by comparing it with three Benchmark classical controllers, which are the Tilt-Integral-Derivative (TID), Proportional-Integral-Derivative (PID), and Fractional-Order PID (FOPID). The parameters of the four controllers are determined by a proposed physical meta-heuristic optimization technique called Transient Search Optimizer (TSO), inspired by the dynamic behaviour in the electrical circuits comprising storage elements such as capacitors and inductors during the switching actions. The system simulation is performed, and the STSMC proved overwhelming superiority over other controllers, as it deals better with the transient interval of the system response. Renewable Energy sources (RESs) like photovoltaic and wind energy systems are established, and the STSMC is tested with industrial and residential load models. Finally, energy storage devices such as batteries and superconducting magnetic energy storage are implemented to suppress the rapid fluctuations in the system response, and it succeeded in doing that as the system oscillations are greatly damped with the energy storage devices. |
Issue Date: | 17-Aug-2023 |
Publisher: | Wiley |
Citation: | Elsaied, M.M., Abdel Hameed, W.H., Hasanien, H.M., Tostado-Véliz, M., Al-Ammar, E.A., Jurado, F.: Optimal sliding mode control for frequency stabilization of hybrid renewable energy systems. IET Renew. Power Gener. 17, 2815–2834 (2023). https://doi.org/10.1049/rpg2.12803 |
Appears in Collections: | DIE-Artículos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Optimal super twisting sliding mode frequency control for modern power systems with renewable energy sources and energy storage devices.pdf | 4,95 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
This item is licensed under a Creative Commons License