Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10953/2120
Título: CONVERGENCIA EN PROCESOS ITERATIVOS DEL PUNTO FIJO EN AMBIENTES MÉTRICOS
Autoría: CALDERÓN SÁNCHEZ, KENYI JAVIER
Dirección: Martínez Moreno, Juan
Rojas Santana, Edixon Manuel
Departamento: Universidad de Jaén. Departamento de Matemáticas
Resumen: La teoría del punto fijo, surge a finales del siglo XIX y su primordial objetivo consiste en establecer la existencia y unicidad de soluciones para cierto tipo de ecuaciones diferenciales e integrables. En el trabajo realizado se estudian procesos iterativos los cuales son la composición de un elemento consigo mismo en forma repetitiva partiendo de un punto inicial dado. Se construyen procesos iterativos con algunos términos extras que llamamos perturbaciones, demostrando que dichos procesos convergen algún punto fijo de algún operador que cumpla con ciertas condiciones de contractividad, todo esto enmarcado en espacios métricos geodésicos. Los resultados obtenidos mejoran y amplían resultados reportados en diversos artículos. También proporcionamos ejemplos para ilustrar el comportamiento de convergencia de los algoritmos propuestos y así comparar numéricamente la convergencia de los esquemas iterativos propuestos con los esquemas existentes.
The theory of the fixed point, arises at the end of the XIX century and its main objective is to establish the existence and uniqueness of solutions for certain types of differential and integrable equations. In the work carried out, iterative processes are studied which are the composition of an element with itself in a repetitive way starting from a given starting point. Iterative processes are built with some extra terms that we call perturbations, showing that these processes converge to some fixed point of some operator that meets certain contractivity conditions, all this in geodesic metric spaces. The results obtained improve and extend the results reported in various papers. We also provide examples to illustrate the convergence behavior of the proposed algorithms and thus numerically compare the convergence of the proposed iterative scheme with the existing schemes.
Palabras clave: punto fijo
espacios métricos CAT (0)
iteraciones
perturbaciones
Fecha: 5-may-2022
Patrocinador: Tesis Univ. Jaén. Departamento de Matemáticas
Editorial: Jaén : Universidad de Jaén
ISBN: 978849159
Citación: p.[http://hdl.handle.net/10953/]
Aparece en las colecciones: Tesis

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Tesis_Kenyi_Calderon.pdf1,07 MBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original