RUJA: Repositorio Institucional de Producción Científica

 

An IoT-enabled hierarchical decentralized framework for multi-energy microgrids market management in the presence of smart prosumers using a deep learning-based forecaster

dc.contributor.authorMansouri, Seyed Amir
dc.contributor.authorJordehi, Ahmad Rezaee
dc.contributor.authorMarzband, Mousa
dc.contributor.authorTostado-Véliz, Marcos
dc.contributor.authorJurado-Melguizo, Francisco
dc.contributor.authorAguado-Sánchez, José Antonio
dc.date.accessioned2025-01-13T08:25:19Z
dc.date.available2025-01-13T08:25:19Z
dc.date.issued2023-03-01
dc.description.abstractThe integrated exploitation of different energy infrastructures in the form of multi-energy systems (MESs) and the transformation of traditional prosumers into smart prosumers are two effective pathways to achieve net-zero emission energy systems in the near future. Managing different energy markets is one of the biggest challenges for the operators of MESs, since different carriers are traded in them simultaneously. Hence, this paper presents a hierarchical decentralized framework for the simultaneous management of electricity, heat and hydrogen markets among multi-energy microgrids (MEMGs) integrated with smart prosumers. The market strategy of MEMGs is deployed using a hierarchical framework and considering the programs requested by smart prosumers. A deep learning-based forecaster is utilized to predict uncertain parameters while a risk-averse information gap decision theory (IGDT)-based strategy controls the scheduling risk. A new prediction-based mechanism for designing dynamic demand response (DR) schemes compatible with smart prosumers’ behavior is introduced, and the results illustrate that this mechanism reduces the electricity and heat clearing prices in peak hours by 17.5% and 8.78%, respectively. Moreover, the results reveal that the introduced structure for hydrogen exchange through the transportation system has the ability to be implemented in competitive markets. Overall, the simulation results confirm that the proposed hierarchical model is able to optimally manage the competitive markets of electricity, heat and hydrogen by taking advantage of the potential of smart prosumers.es_ES
dc.description.sponsorshipThis work is supported by DTE Network + funded by EPSRC grant reference EP/S032053/1es_ES
dc.identifier.citationSeyed Amir Mansouri, Ahmad Rezaee Jordehi, Mousa Marzband, Marcos Tostado-Véliz, Francisco Jurado, José A. Aguado, An IoT-enabled hierarchical decentralized framework for multi-energy microgrids market management in the presence of smart prosumers using a deep learning-based forecaster, Applied Energy, Volume 333, 2023, 120560, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2022.120560.es_ES
dc.identifier.issn0306-2619es_ES
dc.identifier.other10.1016/j.apenergy.2022.120560es_ES
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0306261922018177es_ES
dc.identifier.urihttps://hdl.handle.net/10953/3876
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofApplied Energy [2023]; [333]; [120560]es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectMulti-Energy Systemses_ES
dc.subjectSmart Prosumerses_ES
dc.subjectMachine Learninges_ES
dc.subjectInternet of Thingses_ES
dc.subjectPower-to-Hydrogen Technologieses_ES
dc.subjectElectric and Fuel Cell Vehicleses_ES
dc.titleAn IoT-enabled hierarchical decentralized framework for multi-energy microgrids market management in the presence of smart prosumers using a deep learning-based forecasteres_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
An IoT-enabled hierarchical decentralized framework for multi-energy microgrids market management in the presence of smart prosumers using a deep learning-based forecaster.pdf
Tamaño:
6.03 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones