RUJA: Repositorio Institucional de Producción Científica

 

Enhanced block-sparse adaptive Bayesian algorithm based control strategy of superconducting magnetic energy storage units for wind farms power ripple minimization

dc.contributor.authorHasanien, Hany M.
dc.contributor.authorTurky, Rania A.
dc.contributor.authorTostado-Véliz, Marcos
dc.contributor.authorMuyeen, S.M.
dc.contributor.authorJurado, Francisco
dc.date.accessioned2024-12-03T12:31:40Z
dc.date.available2024-12-03T12:31:40Z
dc.date.issued2022-06
dc.description.abstractThis article presents a novel enhanced block-sparse adaptive Bayesian algorithm (EBSABA) to fully control proportional-integral (PI) controllers of superconducting magnetic energy storage (SMES) units. The main goal is to smooth the real power output from grid-tied wind farms (WFs) and enhance its power quality, which represents a significant concern in the industry. In this regard, two WFs are tied to the network and each one is equipped with a SMES unit. The proposed algorithm takes into consideration the effect of actuating error signal and its magnitude to online update the PI controller gains. The proposed control strategy is applied to all power electronic circuit converters. To obtain a realistic work, practical measured data of wind speed that recorded from Hokkaido Island are incorporated into the analyses. Moreover, a three-drive train model represents a turbine model. A practical 10 MW SMES unit is connected at the WFs terminals. The effectiveness of proposed SMES units is verified by comparing its results with those obtained by using the least mean square-PI SMES units and optimal PI SMES units by genetic algorithm under wind speed variability and uncertainty. The real power can be smoothened by more than 10% using the proposed system at some intervals. The validity of the study is tested by the simulation results that are carried out by PSCAD environment. The controlled SMES units can further improve the power quality of WFs.es_ES
dc.identifier.citationHany M. Hasanien, Rania A. Turky, Marcos Tostado-Véliz, S.M. Muyeen, Francisco Jurado, Enhanced block-sparse adaptive Bayesian algorithm based control strategy of superconducting magnetic energy storage units for wind farms power ripple minimization, Journal of Energy Storage, Volume 50, 2022, 104208, ISSN 2352-152X, https://doi.org/10.1016/j.est.2022.104208.es_ES
dc.identifier.issn2352-152Xes_ES
dc.identifier.other10.1016/j.est.2022.104208es_ES
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S2352152X22002390es_ES
dc.identifier.urihttps://hdl.handle.net/10953/3447
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofJournal of Energy Storage [2022]; [50]; [104208]es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectPower system controles_ES
dc.subjectStorage deviceses_ES
dc.subjectSuperconducting magnetic energy storagees_ES
dc.subjectWind farmses_ES
dc.titleEnhanced block-sparse adaptive Bayesian algorithm based control strategy of superconducting magnetic energy storage units for wind farms power ripple minimizationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Revised Paper.pdf
Tamaño:
7.72 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones