DETECTING OFFENSIVE LANGUAGE BY INTEGRATING MULTIPLE LINGUISTIC PHENOMENA
Fecha
2023-01-30
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Jaén : Universidad de Jaén
Resumen
Las redes sociales se han convertido en un medio de comunicación social donde los usuarios
establecen conversaciones y comparten sus, opiniones. El aumento de las conexiones digitales ha provocado, la difusión del lenguaje ofensivo. El Procesamiento del Lenguaje Natural tiene por objetivo el desarrollo de sistemas computacionales para interpretar el lenguaje humano y ofrece un sinfín de ventajas, como la posibilidad de moderar las conductas nocivas en ,estas plataformas.
Esta tesis investiga métodos avanzados basados de aprendizaje de transferencia para abordar la
detección del lenguaje ofensivo, Para ello, se han generado recursos lingüísticos que son esenciales para entrenar sistemas de aprendizaje automático, en particular para el español. Además, se han identificado diferentes fenómenos, lingüísticos relacionados con la expresión del lenguaje ofensivo y se ha implementado una metodología novedosa que se basa en la integración de estos fenómenos en un sistema de aprendizaje multitarea para detectar con mayor precisión este problema.
Social media have grown into the prirnary means of communicating between people, allowing users to have conversations and share their opinions. The rise in digital social connections has led to the dissemination of harmful communicatton. The Natural Language Processing arises for the development of computational systems to interpret human language. Giving computers this skill offers a plethora of benefits, including the potential to moderate harmful conduct on social media. This thesis relies on advanced methods based on transfer learning to tackle the offensive language detection problem. We have generated appropriate resources to enable us to train Machine Learning systems, particularly for Spanish , for which we discovered a significant lack of resources. Moreover, we have identified different linguistic phenomena that could occur in the expression of offensive language and proposed a novel methodology that relies on integrating these phenomena into a Multi-Task Learning system to detect more accurate this problem.
Social media have grown into the prirnary means of communicating between people, allowing users to have conversations and share their opinions. The rise in digital social connections has led to the dissemination of harmful communicatton. The Natural Language Processing arises for the development of computational systems to interpret human language. Giving computers this skill offers a plethora of benefits, including the potential to moderate harmful conduct on social media. This thesis relies on advanced methods based on transfer learning to tackle the offensive language detection problem. We have generated appropriate resources to enable us to train Machine Learning systems, particularly for Spanish , for which we discovered a significant lack of resources. Moreover, we have identified different linguistic phenomena that could occur in the expression of offensive language and proposed a novel methodology that relies on integrating these phenomena into a Multi-Task Learning system to detect more accurate this problem.
Descripción
Palabras clave
procesamiento del lenguaje natural, tecnologías del lenguaje, detección del lenguaje ofensivo, aprendizaje profundo, recursos lingüísticos en español
Citación
p.[http://hdl.handle.net/10953/]