RUJA: Repositorio Institucional de Producción Científica

 

Efficient power scheduling in smart homes using a novel artificial ecosystem optimization technique considering two pricing schemes

dc.contributor.authorMouassa, Souhil
dc.contributor.authorTostado-Véliz, Marcos
dc.contributor.authorJurado-Melguizo, Francisco
dc.date.accessioned2024-06-12T20:16:49Z
dc.date.available2024-06-12T20:16:49Z
dc.date.issued2021-08
dc.description.abstractWith emergence of automated environments, energy demand increased with unexpected ratio, especially total electricity consumed in the residential sector. This unexpected increase in demand in energy brings a challenging task of maintaining the balance between supply and demand. In this work, a robust artificial ecosystem-inspired optimizer based on demand-side management is proposed to provide the optimal scheduling pattern of smart homes. More precisely, the main objectives of the developed framework are: i) Shifting load from on-peak hours to off-peak hours while fulfilling the consumer intends to reduce electricity-bills. ii) Protect users comfort by improving the appliances waiting time. Artificial ecosystem optimizer (AEO) algorithm is a novel optimization technique inspired by the energy flocking between all living organisms in the ecosystem on earth. Demand side management (DSM) program is modeled as an optimization problem with constraints of starting and ending of appliances. The proposed optimization technique based DSM program is evaluated on two different pricing schemes with considering two operational time intervals (OTI). Extensive simulation cases are carried out to validate the effectiveness of the proposed optimizer based energy management scheme. AEO minimizes total electricity-bills while keeping the user comfort by producing optimum appliances scheduling pattern. Simulation results revealed that the proposed AEO achieved a minimization electricity-bill up to 10.95, 10.2% for RTP and 37.05% for CPP for the 12 and 60 min operational time interval (OTI), respectively, in comparison to other results achieved by other optimizers. On the other hand peak to average ratio (PAR) is reduced to 32.9% using RTP and 31.25% using CPP tariff.es_ES
dc.identifier.citationMouassa, Souhil, Tostado-Véliz, Marcos and Jurado, Francisco. "Efficient power scheduling in smart homes using a novel artificial ecosystem optimization technique considering two pricing schemes" International Journal of Emerging Electric Power Systems, vol. 22, no. 6, 2021, pp. 643-660. https://doi.org/10.1515/ijeeps-2021-0104es_ES
dc.identifier.issn1553-779Xes_ES
dc.identifier.other10.1515/ijeeps-2021-0104es_ES
dc.identifier.urihttps://www.degruyter.com/document/doi/10.1515/ijeeps-2021-0104/html?lang=enes_ES
dc.identifier.urihttps://hdl.handle.net/10953/2908
dc.language.isoenges_ES
dc.publisherDe Gruyteres_ES
dc.relation.ispartofnternational Journal of Emerging Electric Power Systems [2021]; [6]: [643-660]es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectArtificial ecosystem optimization algorithmes_ES
dc.subjectDemand side managementes_ES
dc.subjectModern optimization algorithmses_ES
dc.subjectOptimal power scheduling of home applianceses_ES
dc.titleEfficient power scheduling in smart homes using a novel artificial ecosystem optimization technique considering two pricing schemeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
26 - Efficient power scheduling in smart homes using a novel artificial ecosystem optimization technique considering two pricing schemes.pdf
Tamaño:
1.44 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones