RUJA: Repositorio Institucional de Producción Científica

 

Datos del artículo "How do sentiments affect virality on Twitter?"

dc.contributor.authorJiménez-Zafra, Salud M.
dc.contributor.authorSáez-Castillo, Antonio J.
dc.contributor.authorConde-Sánchez, Antonio
dc.contributor.authorMartín-Valdivia, María Teresa
dc.date.accessioned2024-02-08T15:43:22Z
dc.date.available2024-02-08T15:43:22Z
dc.date.issued2021-05-11
dc.description.abstracthis corpus consists of 46,962 tweets related to the Catalan referendum, a very controversial topic in Spain due to it was an independence referendum called by the Catalan regional government and suspended by the Constitutional Court of Spain after a request from the Spanish government. All the tweets were downloaded on October 1, 2017 with the hashtags #CatalanReferendum or #ReferendumCatalan. Later, we collected features of these tweets on October 31, 2017 in order to analyze their virality. Each item in this collection is made up of the features we used from each tweet to perform the virality analysis: lang: Tweet language. retweet_count: Total number of retweets recorded for a given tweet. favourite_count: Total number of favourites recorded for a given tweet. is_quote_status: Whether a tweet includes a quote of another tweet. num_hashtags: Total number of hashtags in the tweet. num_urls: Total number of URLs in the tweet. num_mentions: Total number of users mentioned in the tweet. interval_time: Interval of the day on which the tweet was published (morning (06:00-12:00), afternoon (12:00-18:00), evening (18:00-00:00) or night (00:00-06:00)). positive_words_iSOL: Total number of positive words found in the tweet using iSOL lexicon. negative_words_iSOL: Total number of negative words found in the tweet using iSOL lexicon. positive_words_NRC: Total number of positive words found in the tweet using NRC lexicon. negative_words_NRC: Total number of negative words found in the tweet using NRC lexicon. positive_words_mlSenticon: Total number of positive words found in the tweet using ML-SentiCon lexicon. negative_words_mlSenticon: Total number of negative words found in the tweet using ML-SentiCon lexicon. verified_user: Whether the tweet is from a verified user. followers_count_user: Total number of users who follow the author of a tweet. friends_count_user: Total number of friends that the author is following. listed_count_user: Total number of lists that include the author of a tweet. favourites_count_user: Total number of favourited tweets by a user. statuses_count_user: Total number of tweets made by the author since the creation of the account.es_ES
dc.identifier.citationJiménez-Zafra, Salud María; Martín-Valdivia, María Teresa; Sáez-Castillo, Antonio José; Conde-Sánchez, Antonio (2021). Catalan Referendum Twitter corpus [Dataset]. Dryad.es_ES
dc.identifier.urihttps://doi.org/10.5061/dryad.stqjq2c24
dc.identifier.urihttps://hdl.handle.net/10953/2270
dc.language.isoenges_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectTwitteres_ES
dc.subjectViralityes_ES
dc.subjectSentiment Analysises_ES
dc.subjectGeneralized Waring Regressiones_ES
dc.titleDatos del artículo "How do sentiments affect virality on Twitter?"es_ES
dc.title.alternativeCatalan Referendum Twitter corpuses_ES
dc.typeDatasetes_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Catalan_Referendum_Twitter_corpus.csv
Tamaño:
2.97 MB
Formato:
Unknown data format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones