RUJA: Repositorio Institucional de Producción Científica

 

Parameter Identification of Lithium-Ion Battery Model Based on African Vultures Optimization Algorithm

dc.contributor.authorFahmy, Hend M.
dc.contributor.authorSweif, Rania A.
dc.contributor.authorHasanien, Hany M.
dc.contributor.authorTostado-Véliz, Marcos
dc.contributor.authorAlharbi, Mohammed
dc.contributor.authorJurado-Melguizo, Francisco
dc.date.accessioned2024-12-04T13:11:27Z
dc.date.available2024-12-04T13:11:27Z
dc.date.issued2023-05-08
dc.description.abstractThis paper establishes a study for an accurate parameter modeling method for lithium-ion batteries. A precise state space model generated from an equivalent electric circuit is used to carry out the proposed identification process, where parameter identification is a nonlinear optimization process problem. The African vultures optimization algorithm (AVOA) is utilized to solve this problem by simulating African vultures’ foraging and navigating habits. The AVOA is used to implement this strategy and improve the quality of the solutions. Four scenarios are considered to take the effect of loading, fading, and dynamic analyses. The fitness function is selected as the integral square error between the estimated and measured voltage in these scenarios. Numerical simulations were executed on a 2600 mAhr Panasonic Li-ion battery to demonstrate the effectiveness of the suggested parameter identification technique. The proposed AVOA was fulfilled with high accuracy, the least error, and high closeness with the experimental data compared with different optimization algorithms, such as the Nelder–Mead simplex algorithm, the quasi-Newton algorithm, the Runge Kutta optimizer, the genetic algorithm, the grey wolf optimizer, and the gorilla troops optimizer. The proposed AVOA achieves the lowest fitness function level of the scenarios studied compared with relative optimization algorithms.es_ES
dc.identifier.citationFahmy, H.M.; Sweif, R.A.; Hasanien, H.M.; Tostado-Véliz, M.; Alharbi, M.; Jurado, F. Parameter Identification of Lithium-Ion Battery Model Based on African Vultures Optimization Algorithm. Mathematics 2023, 11, 2215. https://doi.org/10.3390/math11092215es_ES
dc.identifier.issn2227-7390es_ES
dc.identifier.other10.3390/math11092215es_ES
dc.identifier.urihttps://www.mdpi.com/2227-7390/11/9/2215es_ES
dc.identifier.urihttps://hdl.handle.net/10953/3457
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.ispartofMathematics [2023]; [11]: [2215]es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectLithium-ion batteryes_ES
dc.subjectBattery management systemes_ES
dc.subjectIntegral square errores_ES
dc.subjectState of chargees_ES
dc.subjectBattery modelinges_ES
dc.subjectParameter estimationes_ES
dc.subjectAfrican vultures optimizeres_ES
dc.titleParameter Identification of Lithium-Ion Battery Model Based on African Vultures Optimization Algorithmes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
mathematics-11-02215-v2.pdf
Tamaño:
11.47 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones