RUJA: Repositorio Institucional de Producción Científica

 

A hybrid intelligent model to predict the hydrogen concentration in the producer gas from a downdraft gasifier

dc.contributor.authorAguado-Molina, Roque
dc.contributor.authorCasteleiro-Roca, José Luis
dc.contributor.authorVera, David
dc.contributor.authorCalvo-Rolle, José Luis
dc.date.accessioned2025-02-12T10:58:06Z
dc.date.available2025-02-12T10:58:06Z
dc.date.issued2022-06-05
dc.description.abstractThis research work presents an artificial intelligence approach to predicting the hydrogen concentration in the producer gas from biomass gasification. An experimental gasification plant consisting of an air-blown downdraft fixed-bed gasifier fueled with exhausted olive pomace pellets and a producer gas conditioning unit was used to collect the whole dataset. During an extensive experimental campaign, the producer gas volumetric composition was measured and recorded with a portable syngas analyzer at a constant time step of 10 seconds. The resulting dataset comprises nearly 75 hours of plant operation in total. A hybrid intelligent model was developed with the aim of performing fault detection in measuring the hydrogen concentration in the producer gas and still provide reliable values in the event of malfunction. The best performing hybrid model comprises six local internal submodels that combine artificial neural networks and support vector machines for regression. The results are remarkably satisfactory, with a mean absolute prediction error of only 0.134% by volume. Accordingly, the developed model could be used as a virtual sensor to support or even avoid the need for a real sensor that is specific for measuring the hydrogen concentration in the producer gas.es_ES
dc.identifier.citationR. Aguado, J.-L. Casteleiro-Roca, D. Vera, J. L. Calvo-Rolle, A hybrid intelligent model to predict the hydrogen concentration in the producer gas from a downdraft gasifier, International Journal of Hydrogen Energy 47(48) (2022) 20755-20770es_ES
dc.identifier.issn0360-3199es_ES
dc.identifier.other10.1016/j.ijhydene.2022.04.174es_ES
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2022.04.174
dc.identifier.urihttps://hdl.handle.net/10953/4667
dc.language.isoenges_ES
dc.publisherELSEVIERes_ES
dc.relation.ispartofInternational Journal of Hydrogen Energyes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectBiomass gasificationes_ES
dc.subjectGreen hydrogenes_ES
dc.subjectArtificial intelligencees_ES
dc.subjectMachine learninges_ES
dc.subjectHybrid modelinges_ES
dc.subjectVirtual sensores_ES
dc.titleA hybrid intelligent model to predict the hydrogen concentration in the producer gas from a downdraft gasifieres_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Aguado et al. (2022) - Int J Hydrogen Energy.pdf
Tamaño:
2.68 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones