Unlocking the Water Trimer Loop: Isotopic Study of Benzophenone-(H2O)1–3 Clusters with Rotational Spectroscopy
dc.contributor.author | Li, Weixing | |
dc.contributor.author | Quesada-Moreno, María Mar | |
dc.contributor.author | Pinacho, Pablo | |
dc.contributor.author | Schnell, Melanie | |
dc.date.accessioned | 2025-07-21T07:51:34Z | |
dc.date.available | 2025-07-21T07:51:34Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Examined here are the structures of complexes of benzophenone microsolvated with up to three water molecules by using broadband rotational spectroscopy and the cold conditions of a molecular jet. The analysis shows that the water molecules dock sideways on benzophenone for the water monomer and dimer moieties, and they move above one of the aromatic rings when the water cluster grows to the trimer. The rotational spectra shows that the water trimer moiety in the complex adopts an open-loop arrangement. Ab initio calculations face a dilemma of identifying the global minimum between the open loop and the closed loop, which is only solved when zero-point vibrational energy correction is applied. An OH⋅⋅⋅π bond and a Bürgi-Dunitz interaction between benzophenone and the water trimer are present in the cluster. This work shows the subtle balance between water–water and water–solute interactions when the solute molecule offers several different anchor sites for water molecules. | |
dc.description.sponsorship | This work was financially supported by the Deutsche Forschungsgemeinschaft (SCHN1280/4-2, project number 271359857) in the context of the priority program SPP 1807 “Control of London dispersion interactions in molecular chemistry”. M.M.Q.M. thanks the Fundación Alfonso Martín Escudero for a postdoctoral grant. P.P. thanks the Alexander von Humboldt Foundation for a postdoctoral fellowship. We also acknowledge the scientific exchange and support of the Center for Molecular Water Science (CMWS). Open access funding enabled and organized by Projekt DEAL. | |
dc.identifier.citation | Angew. Chem. Int. Ed. 2021, 60, 5323 – 5330 | |
dc.identifier.issn | 1521-3773 | |
dc.identifier.other | 10.1002/anie.202013899 | |
dc.identifier.uri | https://hdl.handle.net/10953/5970 | |
dc.language.iso | eng | |
dc.publisher | Wiley | |
dc.relation.ispartof | Angewandte Chemie International Edition | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain | en |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | |
dc.subject | Hydrogen Bonding | |
dc.subject | Microsolvation | |
dc.subject | Rotational spectroscopy | |
dc.subject | Structure elucidation | |
dc.subject | Water clusters | |
dc.subject.udc | 544 | |
dc.title | Unlocking the Water Trimer Loop: Isotopic Study of Benzophenone-(H2O)1–3 Clusters with Rotational Spectroscopy | |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | info:eu-repo/semantics/acceptedVersion |