RUJA: Repositorio Institucional de Producción Científica

 

Unlocking the Water Trimer Loop: Isotopic Study of Benzophenone-(H2O)1–3 Clusters with Rotational Spectroscopy

Fecha

2021

Título de la revista

ISSN de la revista

Título del volumen

Editor

Wiley

Resumen

Examined here are the structures of complexes of benzophenone microsolvated with up to three water molecules by using broadband rotational spectroscopy and the cold conditions of a molecular jet. The analysis shows that the water molecules dock sideways on benzophenone for the water monomer and dimer moieties, and they move above one of the aromatic rings when the water cluster grows to the trimer. The rotational spectra shows that the water trimer moiety in the complex adopts an open-loop arrangement. Ab initio calculations face a dilemma of identifying the global minimum between the open loop and the closed loop, which is only solved when zero-point vibrational energy correction is applied. An OH⋅⋅⋅π bond and a Bürgi-Dunitz interaction between benzophenone and the water trimer are present in the cluster. This work shows the subtle balance between water–water and water–solute interactions when the solute molecule offers several different anchor sites for water molecules.

Descripción

Palabras clave

Hydrogen Bonding, Microsolvation, Rotational spectroscopy, Structure elucidation, Water clusters

Citación

Angew. Chem. Int. Ed. 2021, 60, 5323 – 5330

Colecciones