RUJA: Repositorio Institucional de Producción Científica

 

Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques

dc.contributor.authorArévalo, Paul
dc.contributor.authorBenavides, Dario
dc.contributor.authorTostado-Véliz, Marcos
dc.contributor.authorAguado-Sánchez, José Antonio
dc.contributor.authorJurado-Melguizo, Francisco
dc.date.accessioned2024-06-12T20:15:22Z
dc.date.available2024-06-12T20:15:22Z
dc.date.issued2023-03
dc.description.abstractIn recent years, photovoltaic energy production has experienced significant progress, being integrated into the grid through large-scale distributed systems. The intermittent nature of solar irradiance coupled with the presence of photovoltaic failures causes fluctuations that could compromise the quality and stability of electrical grid. This paper presents a novel photovoltaic power smoothing method in a combination with moving averages and ramp rate to reduce fluctuations with hybrid storage systems (supercapacitors/batteries), the main novelty involves optimizing the number of charging/discharging cycles under PV failures. To achieve this goal, a photovoltaic failure detection method is proposed that uses machine learning to process big data by monitoring the behavior of photovoltaic. The experiments have been done under controlled conditions in the microgrid laboratory of the University of Cuenca. The results show the reduction of the supercapacitor operation with respect to other power smoothing methods. Moreover, the monitoring system is capable of detecting a failure in photovoltaic systems with a root mean squared error of 0.66 and the computational effort is reduced using the new smoothing technique. In this sense, the initial execution time is 4 times lower compared to the moving average method.es_ES
dc.identifier.citationPaul Arévalo, Dario Benavides, Marcos Tostado-Véliz, José A. Aguado, Francisco Jurado, Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques, Renewable Energy, Volume 205, 2023, Pages 366-383, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2023.01.059.es_ES
dc.identifier.issn1879-0682es_ES
dc.identifier.other10.1016/j.renene.2023.01.059es_ES
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S096014812300068Xes_ES
dc.identifier.urihttps://hdl.handle.net/10953/2899
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofRenewable Energy [2023]; [205]: [366-383]es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses_ES
dc.subjectBattery energy storagees_ES
dc.subjectPhotovoltaices_ES
dc.subjectPower smoothinges_ES
dc.subjectRenewable energyes_ES
dc.subjectSupercapacitores_ES
dc.titleSmart monitoring method for photovoltaic systems and failure control based on power smoothing techniqueses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Paper CLEAR.pdf
Tamaño:
3.41 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones