RUJA: Repositorio Institucional de Producción Científica

 

Monitoring organic matter transformation of olive oil production residues in a full-scale composting plant by fluorescence spectroscopy

Resumen

Composting wet olive mill pomace, the main by-product of two-phase centrifugation systems, is an attractive valorization strategy in the context of regenerative agriculture. A comprehensive study of the changes in fluorescence signatures during the co-composting of this residue with olive tree pruning wastes and animal manure in a full-scale composting plant was performed. This compost showed more complex features than others at the initial stages of the process, exhibiting a singular band in the synchronous spectrum (500 nm) here attributed to polyphenol-pectin interactions. PARAFAC-derived components from Excitation-Emission matrices (EEMs) of water extracts were compared with those of fractions isolated following alkaline extraction at different maturity stages. The increase with composting of the component associated with humic-like substances (Ex 225, 365 nm/Em 476 nm) was more marked in the isolated humic acid fraction than in water extracts. Thus, the predominance of fulvic-like substances in water extracts explains inconsistencies previously reported about the relevance of the humic-like component during the composting process and the extent of humification. Finally, the correlation between PARAFAC components and several compost maturity parameters was studied. The negative correlation between the protein-like component and the germination index was explained by the protein-polyphenol interactions reflected in the emission spectra of this component. A strong positive correlation between both fulvic and humic fluorescent components and cation exchange capacity was found. In general, mature compost showed C/N ≤ 20 and no phytotoxicity (GI around 60%) although differences related to the heterogeneity of the large composting pile were important.

Descripción

Palabras clave

Olive mill pomace, Compost maturity, Dissolved organic matter, Humification, Fluorescence spectroscopy, PARAFAC

Citación

Environmental Technology & Innovation, 2024; 35: 103695

Colecciones