RUJA: Repositorio Institucional de Producción Científica

 

The Probabilistic Optimal Integration of Renewable Distributed Generators Considering the Time-Varying Load Based on an Artificial Gorilla Troops Optimizer

dc.contributor.authorRamadan, Ashraf
dc.contributor.authorEbeed, Mohamed
dc.contributor.authorKamel, Salah
dc.contributor.authorAgwa, Ahmed M.
dc.contributor.authorTostado-Véliz, Marcos
dc.date.accessioned2024-06-26T08:12:50Z
dc.date.available2024-06-26T08:12:50Z
dc.date.issued2022-02
dc.description.abstractRenewable distributed generators (RDGs) are widely embedded in electrical distribution networks due to their economic, technological, and environmental benefits. However, the main problem with RDGs, photovoltaic generators, and wind turbines, in particular, is that their output powers are constantly changing due to variations in sun irradiation and wind speed, leading to power system uncertainty. Such uncertainties should be taken into account when selecting the optimal allocation of RDGs. The main innovation of this paper is a proposed efficient metaheuristic optimization technique for the sizing and placement of RDGs in radial distribution systems considering the uncertainties of the loading and RDG output power. A Monte Carlo simulation method, along with the backward reduction algorithm, is utilized to create a set of scenarios to model these uncertainties. To find the positions and ratings of the RDGs, the artificial gorilla troops optimizer (GTO), a new efficient strategy that minimizes the total cost, is used to optimize a multiobjective function, total emissions, and total voltage deviations, as well as the total voltage stability boosting. The proposed technique is tested on an IEEE 69-bus network and a real Egyptian distribution grid (East Delta Network (EDN) 30-bus network). The results indicate that the proposed GTO can optimally assign the positions and ratings of RDGs. Moreover, the integration of RDGs into an IEEE 69-bus system can reduce the expected costs, emissions, and voltage deviations by 28.3%, 52.34%, and 66.95%, respectively, and improve voltage stability by 5.6%; in the EDN 30-bus system, these values are enhanced by 25.97%, 51.1%, 67.25%, and 7.7%, respectively.es_ES
dc.identifier.citationRamadan, A.; Ebeed, M.; Kamel, S.; Agwa, A.M.; Tostado-Véliz, M. The Probabilistic Optimal Integration of Renewable Distributed Generators Considering the Time-Varying Load Based on an Artificial Gorilla Troops Optimizer. Energies 2022, 15, 1302. https://doi.org/10.3390/en15041302es_ES
dc.identifier.issn1996-1073es_ES
dc.identifier.other10.3390/en15041302es_ES
dc.identifier.urihttps://www.mdpi.com/1996-1073/15/4/1302es_ES
dc.identifier.urihttps://hdl.handle.net/10953/2946
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.ispartofEnergies [2022]; [15]: [1302]es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectRenewable energyes_ES
dc.subjectSolares_ES
dc.subjectWindes_ES
dc.subjectDGes_ES
dc.subjectUncertaintieses_ES
dc.subjectGorilla troops optimizeres_ES
dc.subjectRadial distribution systemes_ES
dc.subjectBackward reduction methodologyes_ES
dc.subjectMonte Carlo simulation approaches_ES
dc.titleThe Probabilistic Optimal Integration of Renewable Distributed Generators Considering the Time-Varying Load Based on an Artificial Gorilla Troops Optimizeres_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
energies-15-01302-v2.pdf
Tamaño:
4.42 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones