RUJA: Repositorio Institucional de Producción Científica

 

Optimal parameters estimation of lithium-ion battery in smart grid applications based on gazelle optimization algorithm

dc.contributor.authorHasanien, Hany M.
dc.contributor.authorAlsaleh, Ibrahim
dc.contributor.authorTostado-Véliz, Marcos
dc.contributor.authorAlassaf, Abdullah
dc.contributor.authorAlateeq, Ayoob
dc.contributor.authorJurado, Francisco
dc.date.accessioned2025-01-10T12:25:28Z
dc.date.available2025-01-10T12:25:28Z
dc.date.issued2023-12-15
dc.description.abstractThe principal contribution of this article focusing on obtaining a precise model of the lithium-ion battery (LiB). This in fact affects the simulation analyses and dynamics of such batteries in several applications including electric vehicles, microgrids, distribution systems, and smart grids. The main challenge here is the heavy nonlinearity of the optimization problem. The proposed gazelle optimization algorithm (GOA) is utilized in minimizing the fitness function, which depends on the integral squared error approach. The error is considered between the identified and practical battery voltage. The validity of the proposed approach is checked considering various operating conditions such as the loading effect, fading impact, and other dynamic responses. The effectiveness of introduced approach is validated by comparing the simulation results with practical results on a real Panasonic LiB of 2.6 Ahr capacity. These results are performed by MATLAB software. Furthermore, GOA-based LiB model is compared with various heuristic and conventional algorithms-based models. With the proposed GOA-based LiB model, an efficient and accurate battery model can be built.es_ES
dc.identifier.citationHany M. Hasanien, Ibrahim Alsaleh, Marcos Tostado-Véliz, Abdullah Alassaf, Ayoob Alateeq, Francisco Jurado, Optimal parameters estimation of lithium-ion battery in smart grid applications based on gazelle optimization algorithm, Energy, Volume 285, 2023, 129509, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2023.129509.es_ES
dc.identifier.issn0360-5442es_ES
dc.identifier.other10.1016/j.energy.2023.129509es_ES
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0360544223029031?via%3Dihubes_ES
dc.identifier.urihttps://hdl.handle.net/10953/3822
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofEnergy [2023]; [285]: [129509]es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectElectric vehicleses_ES
dc.subjectLithium-ion batteryes_ES
dc.subjectOptimization methodses_ES
dc.subjectSmart gridses_ES
dc.titleOptimal parameters estimation of lithium-ion battery in smart grid applications based on gazelle optimization algorithmes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Optimal parameters estimation of lithium-ion battery in smart grid applications based on gazelle optimization algorithm.pdf
Tamaño:
2.49 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones