RUJA: Repositorio Institucional de Producción Científica

 

Pattern-driven behaviour for demand-side management: An analysis of appliance use

dc.contributor.authorCruz-de-la-Torre, Carlos
dc.contributor.authorTostado-Véliz, Marcos
dc.contributor.authorPalomar, Esther
dc.contributor.authorBravo, Ignacio
dc.date.accessioned2024-12-02T08:25:34Z
dc.date.available2024-12-02T08:25:34Z
dc.date.issued2024-04-01
dc.description.abstractEnergy communities play a key role in the transition to sustainable energy, helping to inform and engage end-users so that they can become active energy consumers. In practice, trials and pilots often risk failure due to misplaced expectations and unforeseen behaviours when it comes to achieving flexible energy demand resources. In order to tackle these challenges, residential electricity load profile datasets and consumer survey results emerge as powerful tools for identifying controllable loads, energy consumption models, and tailored understanding of communities' energy contexts. This paper first outlines and analyses these datasets' capabilities to leverage data-driven decision-making for more efficient deployments of demand-side management (DSM) systems. A number of appliance behaviour patterns are extracted, based on high and flexible loads for shifting, being validated over three different use cases to support turn-key DSM in the presence and absence of renewable supply and bill saving. A genetic algorithm optimization is applied to underpin flexible demand reallocation and optimal community load profiles by combining time-variable tariff of use. Experiments demonstrate that controllable and shiftable appliances can reduce average peak load by up to 29% by increasing renewable self-consumption, leading to a valuable energy bill saving of 9%. Our findings also point to the current limitations of existing load/consumption datasets, which are hindering more efficient DSM design of flexibility and demand response programmes in energy communities.es_ES
dc.description.sponsorshipSpanish Ministry of Science and Innovation, NextGenerationEU funding 2021-2024 for green and digital transition projects: Project title: “Demand Response to the test: Living lab demonstration of aggregated demand response scheduling that optimizes renewable energy use (PUT-DR-2TEST)”, Ref.: TED2021-132700B-I00).es_ES
dc.identifier.citationCarlos Cruz, Marcos Tostado-Véliz, Esther Palomar, Ignacio Bravo, Pattern-driven behaviour for demand-side management: An analysis of appliance use, Energy and Buildings, Volume 308, 2024, 113988, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2024.113988.es_ES
dc.identifier.issn0378-7788es_ES
dc.identifier.other10.1016/j.enbuild.2024.113988es_ES
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S037877882400104Xes_ES
dc.identifier.urihttps://hdl.handle.net/10953/3433
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofEnergy and Buildings [2024]; [308]: [113988]es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectEnergy and behavioures_ES
dc.subjectEnergy modellinges_ES
dc.subjectDemand profilinges_ES
dc.subjectDemand-side managementes_ES
dc.subjectLoad patternses_ES
dc.subjectControllable applianceses_ES
dc.titlePattern-driven behaviour for demand-side management: An analysis of appliance usees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Paper.pdf
Tamaño:
1.43 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones