Power Factor Compensation Using Teaching Learning Based Optimization and Monitoring System by Cloud Data Logger
Archivos
Fecha
2019-05-10
Título de la revista
ISSN de la revista
Título del volumen
Editor
MDPI
Resumen
The main objective of this paper is to compensate power factor using teaching learning based optimization (TLBO), determine the capacitor bank optimization (CBO) algorithm, and monitor a system in real-time using cloud data logging (CDL). Implemented Power Factor Compensation and Monitoring System (PFCMS) calculates the optimal capacitor combination to improve power factor of the installation by measure of voltage, current, and active power. CBO algorithm determines the best solution of capacitor values to install, by applying TLBO in di erent phases of the algorithm. Electrical variables acquired by the sensors and the variables calculated are stored in CDL using Google Sheets (GS) to monitor and analyse the installation by means of a TLBO algorithm implemented in PFCMS, that optimizes the compensation power factor of installation and determining which capacitors are connected in real time. Moreover, the optimization of the power factor in facilities means economic and energy savings, as well as the improvement of the quality of the operation of the installation.
Descripción
Palabras clave
Power factor compensation monitoring system PFCMS, Power factor PF, Cloud data logger CDL, Teaching learning based optimization TLBO, Capacitor bank optimization CBO