RUJA: Repositorio Institucional de Producción Científica

 

Coot Bird Algorithms-Based Tuning PI Controller for Optimal Microgrid Autonomous Operation

dc.contributor.authorHussien, Ahmed Moreab
dc.contributor.authorTurky, Rania A.
dc.contributor.authorAlkuhayli, Abdulaziz
dc.contributor.authorHasanien, Hany M.
dc.contributor.authorTostado-Véliz, Marcos
dc.contributor.authorJurado, Francisco
dc.date.accessioned2025-01-10T10:33:36Z
dc.date.available2025-01-10T10:33:36Z
dc.date.issued2022
dc.description.abstractThis paper develops a novel methodology for optimal control of islanded microgrids (MGs) based on the coot bird metaheuristic optimizer (CBMO). To this end, the optimum gains for the PI controller are found using the CBMO under a multi-objective optimization framework. The Response Surface Methodology (RSM) is incorporated into the developed procedure to achieve a compromise solution among the different objectives. To prove the effectiveness of the new proposal, a benchmark MG is tested under various scenarios, 1) isolate the system from the grid (autonomous mode), 2) islanded system exposure to load changes, and 3) islanded system exposure to a 3 phase fault. Extensive simulations are performed to validate the new method taking conventional data from PSCAD/EMTDC software. The validity of the suggested optimizer is proved by comparing its results with that achieved using the LMSRE-based adaptive control, sunflower optimization algorithm (SFO), Ziegler-Nichols method and the particle swarm optimization (PSO) techniques. The article shows the superiority of the suggested CBMO over the LMSRE-based adaptive control, SFO, Ziegler-Nichols and the PSO techniques in the transient responses of the system.es_ES
dc.identifier.citationA. M. Hussien et al., "Coot Bird Algorithms-Based Tuning PI Controller for Optimal Microgrid Autonomous Operation," in IEEE Access, vol. 10, pp. 6442-6458, 2022, doi: 10.1109/ACCESS.2022.3142742.es_ES
dc.identifier.issn2169-3536es_ES
dc.identifier.other10.1109/ACCESS.2022.3142742es_ES
dc.identifier.urihttps://ieeexplore.ieee.org/document/9681080es_ES
dc.identifier.urihttps://hdl.handle.net/10953/3810
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.relation.ispartofIEEE Access [2022]; [10]: [6442-6458]es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectDistributed generatorses_ES
dc.subjectSunflower optimization algorithmes_ES
dc.subjectMicrogrides_ES
dc.subjectRenewable energyes_ES
dc.subjectCoot bird metaheuristic optimizeres_ES
dc.titleCoot Bird Algorithms-Based Tuning PI Controller for Optimal Microgrid Autonomous Operationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Coot Bird Algorithms-Based Tuning PI Controller for Optimal Microgrid Autonomous Operation.pdf
Tamaño:
3.45 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones