RUJA: Repositorio Institucional de Producción Científica

 

Fault analysis in clustered microgrids utilizing SVM-CNN and differential protection

dc.contributor.authorArévalo, Paul
dc.contributor.authorCano-Ortega, Antonio
dc.contributor.authorBenavides, Darío
dc.contributor.authorJurado-Melguizo, Francisco
dc.date.accessioned2025-10-03T07:35:45Z
dc.date.available2025-10-03T07:35:45Z
dc.date.issued2024-07-10
dc.description.abstractThe integration of distributed generation, microgrids, and renewable energy sources has significantly enhanced the resilience of modern electrical grids. However, this transition presents challenges in control, stability, safety, and protection due to low fault currents from renewables. This paper addresses these challenges by proposing novel methodologies to enhance fault detection, classification, and localization in microgrids. The literature review highlights a shift towards intelligent learning methods in microgrid protection systems, improving fault response times and identifying electrical faults, including high impedance faults. Nonetheless, existing methods often neglect high impedance fault detection and the integration of differential protection in clustered microgrids. To fill these gaps, this study presents a methodology combining support vector machines and convolutional neural networks for fault detection in microgrids, integrating differential protection for high impedance fault detection. The paper also proposes approaches to optimize protection in clustered microgrid systems. The effectiveness of the methodology is validated using Opal-RT through comparative analyses of signal decomposition techniques, performance and accuracy of support vector machines and convolutional neural networks, KFold validation, and sensitivity analysis. Results demonstrate robustness and high performance, achieving up to 100 % accuracy in fault detection and classification.
dc.identifier.issn1568-4946
dc.identifier.otherhttps://www.sciencedirect.com/science/article/pii/S1568494624008056?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/10953/6158
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofApplied Soft Computing Journal 164 (2024)
dc.rightsCC0 1.0 Universalen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.subjectMicrogrids
dc.subjectRenewable energy sources
dc.subjectFault detection
dc.subjectDifferential protection
dc.subject.udc621.35
dc.titleFault analysis in clustered microgrids utilizing SVM-CNN and differential protection
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
IJEPES-S-23-03470.pdf
Tamaño:
1.4 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones