Effect of electrical operating conditions on thermal behavior of PV modules: Numerical and experimental analysis
Fecha
2025
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Resumen
The rapid growth of photovoltaic (PV) energy has the potential to transform the global energy landscape. However, the intermittent nature of solar power presents significant challenges to grid integration, such as overgeneration and curtailment. Consequently, PV systems may operate at points other than the maximum power point (MPP). Monitoring the thermal behavior of photovoltaic systems is critical due to its impact on productivity and system health. Most studies focus on meteorological variables, often overlooking the influence of electrical operating states on thermal performance. Thus the objective is to evaluate the accuracy of existing thermal models from the literature and widely used specialized software tools—alongside their commonly cited coefficients against different electrical operating status (EOS). This study investigates the thermal behavior of PV modules under different EOS: short-circuited (PVset-1), open-circuited (PVset-2), and operating at MPP (PVset-3). The experiment was conducted over four months at Jaén University campus in Spain. Results showed the short-circuited module's temperature was 6.90 °C higher, and the open-circuited module's temperature was 3.67 °C higher than the MPP module. Thermographic investigations revealed multiple hotspots in the short-circuited set. These hotspots can severely impact the module's long-term reliability and efficiency. The analysis of thermal models considering these operating states indicated an overestimation of the MPP module's temperature. However, the Keddouda model demonstrated high accuracy potential, with an average deviation of less than 3.4 %, particularly at high irradiance levels. These findings highlight the necessity of considering EOS in thermal models to enhance the accuracy and reliability of PV system performance assessments.
Descripción
Palabras clave
Thermal model, Temperature, Short circuit, Open circuit, Maximum power point, Performance