An Optimal Linear Fusion Estimation Algorithm of Reduced Dimension for T-Proper Systems with Multiple Packet Dropouts
Fecha
2023-04-17
Título de la revista
ISSN de la revista
Título del volumen
Editor
MDPI
Resumen
This paper analyses the centralized fusion linear estimation problem in multi-sensor systems with multiple packet dropouts and correlated noises. Packet dropouts are modeled by independent Bernoulli distributed random variables. This problem is addressed in the tessarine domain under conditions of 𝕋1 and 𝕋2-properness, which entails a reduction in the dimension of the problem and, consequently, computational savings. The methodology proposed enables us to provide an optimal (in the least-mean-squares sense) linear fusion filtering algorithm for estimating the tessarine state with a lower computational cost than the conventional one devised in the real field. Simulation results illustrate the performance and advantages of the solution proposed in different settings.
Descripción
Palabras clave
centralized fusion estimation, multi-sensor systems, packet dropouts, tessarine signal processing, 𝕋k-properness
Citación
Fernández-Alcalá RM, Jiménez-López JD, Le Bihan N, Cheong Took C. An Optimal Linear Fusion Estimation Algorithm of Reduced Dimension for 𝕋 -Proper Systems with Multiple Packet Dropouts. Sensors. 2023; 23(8):4047. https://doi.org/10.3390/s23084047