RUJA: Repositorio Institucional de Producción Científica

 

Manta Ray Foraging Optimization for the Virtual Inertia Control of Islanded Microgrids Including Renewable Energy Sources

dc.contributor.authorSaleh, Amr
dc.contributor.authorOmran, Walid A.
dc.contributor.authorHasanien, Hany M.
dc.contributor.authorTostado-Véliz, Marcos
dc.contributor.authorAlkuhayli, Abdulaziz
dc.contributor.authorJurado-Melguizo, Francisco
dc.date.accessioned2024-07-04T08:30:09Z
dc.date.available2024-07-04T08:30:09Z
dc.date.issued2022-04
dc.description.abstractNowadays, the penetration level of renewable energy sources (RESs) has increased dramatically in electrical networks, especially in microgrids. Due to the replacement of conventional synchronous generators by RESs, the inertia of the microgrid is significantly reduced. This has a negative impact on the dynamics and performance of the microgrid in the face of uncertainties, resulting in a weakening of microgrid stability, especially in an islanded operation. Hence, this paper focuses on enhancing the dynamic security of an islanded microgrid using a frequency control concept based on virtual inertia control. The control in the virtual inertia control loop was based on a proportional-integral (PI) controller optimally designed by the Manta Ray Foraging Optimization (MRFO) algorithm. The performance of the MRFO-based PI controller was investigated considering various operating conditions and compared with that of other evolutionary optimization algorithm-based PI controllers. To achieve realistic simulations conditions, actual wind data and solar power data were used, and random load fluctuations were implemented. The results show that the MRFO-based PI controller has a superior performance in frequency disturbance alleviation and reference frequency tracking compared with the other considered optimization techniques.es_ES
dc.identifier.citationSaleh, A.; Omran, W.A.; Hasanien, H.M.; Tostado-Véliz, M.; Alkuhayli, A.; Jurado, F. Manta Ray Foraging Optimization for the Virtual Inertia Control of Islanded Microgrids Including Renewable Energy Sources. Sustainability 2022, 14, 4189. https://doi.org/10.3390/su14074189es_ES
dc.identifier.issn2071-1050es_ES
dc.identifier.other10.3390/su14074189es_ES
dc.identifier.urihttps://www.mdpi.com/2071-1050/14/7/4189es_ES
dc.identifier.urihttps://hdl.handle.net/10953/2971
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.ispartofSustainability [2022]; [14]: [4189]es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectManta ray foraging optimizeres_ES
dc.subjectVirtual inertiaes_ES
dc.subjectMicrogrides_ES
dc.subjectRenewable energyes_ES
dc.titleManta Ray Foraging Optimization for the Virtual Inertia Control of Islanded Microgrids Including Renewable Energy Sourceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
sustainability-14-04189.pdf
Tamaño:
2.86 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones