TOMA DE DECISIONES INTELIGENTES BAJO INCERTIDUMBRE
Fecha
2023-07-13
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Jaén : Universidad de Jaén
Resumen
La Toma de Decisiones en Grupo a Gran Escala (TDGGE) facilita la resolución de problemas
reales en la que participan un número de decisores mucho mayor que en la TDG clásica. Sin
embargo, incrementar la cantidad de decisores involucrados en el proceso de decisión conlleva
un aumento de su complejidad. Por lo tanto, es necesario desarrollar nuevos modelos, métodos y
herramientas para mejorar, analizar y resolver los problemas de TDGGE. Todo esto implica
nuevos desafíos tales como el modelado no lineal de preferencias, procesos de TDGGE con
cientos o miles de expertos, y la necesidad de métricas objetivas para evaluar el rendimiento de
los procesos de consenso. La investigación de esta tesis doctoral busca mejorar los procesos de
TDGGE mediante el uso de herramientas y modelos matemáticos, con el objetivo alcanzar los
desafíos anteriores y aumentar la precisión y robustez de los modelos en TDGGE.
Large Scale Group Decision Making (LSGDM) facilitates the resolution of real problems involving a much larger number of decision-makers than in classical GDM. However, increasing the number of decision- makers who take part in the decision process leads to an increment in its complexity. Therefore, it is necessary to develop new models, methods, and tools to improve, analyze and solve LSGDM problems. All this implies new challenges such as nonlinear modeling of preferences, LSGDM processes with hundreds or thousands of experts, and the need for objective metrics to evaluate the performance of consensus processes. The research of this Ph.D. thesis seeks to improve LSGDM processes by using mathematical tools and models, with the aim of achieving the above challenges and increasing the accuracy and robustness of LSGDM models.
Large Scale Group Decision Making (LSGDM) facilitates the resolution of real problems involving a much larger number of decision-makers than in classical GDM. However, increasing the number of decision- makers who take part in the decision process leads to an increment in its complexity. Therefore, it is necessary to develop new models, methods, and tools to improve, analyze and solve LSGDM problems. All this implies new challenges such as nonlinear modeling of preferences, LSGDM processes with hundreds or thousands of experts, and the need for objective metrics to evaluate the performance of consensus processes. The research of this Ph.D. thesis seeks to improve LSGDM processes by using mathematical tools and models, with the aim of achieving the above challenges and increasing the accuracy and robustness of LSGDM models.
Descripción
Palabras clave
toma de decisiones en grupo a gran escala, procesos de alcance de consenso a gran escala, modelado no lineal de preferencias, modelos de consenso de coste mínimo
Citación
p.[http://hdl.handle.net/10953/]