RUJA: Repositorio Institucional de Producción Científica

 

On the rates of pointwise convergence for Bernstein polynomials

dc.contributor.authorAdell, José Antonio
dc.contributor.authorCárdenas-Morales, Daniel
dc.contributor.authorLópez-Moreno, Antonio Jesús
dc.date.accessioned2025-04-10T11:40:38Z
dc.date.available2025-04-10T11:40:38Z
dc.date.issued2025
dc.description.abstractLet f be a real bounded function defined on the interval [0, 1], which is affine on a subinterval (a,b) of [0,1], and let Bnf be its associated nth Bernstein polynomial. We prove that, for any x in (a,b), |Bnf(x)-f(x)| converges to 0 as n tends to infinity at an exponential rate of decay. Moreover, we show that this property is no longer true at the boundary of (a, b). For Bernstein–Kantorovich type operators similar properties hold, whenever f is assumed to be constant instead of affine.
dc.identifier.issn1420-9012 (Electronic) 1422-6383 (Print)
dc.identifier.otherdoi.org/10.1007/s00025-025-02397-3
dc.identifier.urihttps://hdl.handle.net/10953/4931
dc.language.isoeng
dc.publisherBirkhäuser
dc.relation.ispartofResults in Mathematics
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectBernstein polynomials, locally constant functions, exponential rates, binomial random variable, bernstein-Kantorovich type operators
dc.subject.udc41A36, 41A10, 41A25, 60E05
dc.titleOn the rates of pointwise convergence for Bernstein polynomials
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Published Online First.pdf
Tamaño:
327.38 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones