RUJA: Repositorio Institucional de Producción Científica

 

On the rates of pointwise convergence for Bernstein polynomials

Fecha

2025

Título de la revista

ISSN de la revista

Título del volumen

Editor

Birkhäuser

Resumen

Let f be a real bounded function defined on the interval [0, 1], which is affine on a subinterval (a,b) of [0,1], and let Bnf be its associated nth Bernstein polynomial. We prove that, for any x in (a,b), |Bnf(x)-f(x)| converges to 0 as n tends to infinity at an exponential rate of decay. Moreover, we show that this property is no longer true at the boundary of (a, b). For Bernstein–Kantorovich type operators similar properties hold, whenever f is assumed to be constant instead of affine.

Descripción

Palabras clave

Bernstein polynomials, locally constant functions, exponential rates, binomial random variable, bernstein-Kantorovich type operators

Citación

Colecciones