RUJA: Repositorio Institucional de Producción Científica

 

Parameters estimation and sensitivity analysis of lithium-ion battery model uncertainty based on osprey optimization algorithm

dc.contributor.authorAlqahtani, Ayedh H.
dc.contributor.authorFahmy, Hend M.
dc.contributor.authorHasanien, Hany M.
dc.contributor.authorTostado-Véliz, Marcos
dc.contributor.authorAlkuhayli, Abdulaziz
dc.contributor.authorJurado, Francisco
dc.date.accessioned2025-01-10T12:27:16Z
dc.date.available2025-01-10T12:27:16Z
dc.date.issued2024-09-30
dc.description.abstractTo advance the field of lithium-ion battery (LIB) research, this paper unveils an accurate modelling of LIB that primarily relies on the equivalent circuit model, backed by the Osprey Optimization Algorithm (OOA). In the modelling stage, both single and double resistance-capacitance models are evaluated to depict the charge dynamics, incorporating the effects of fading, load, and temperature variations. The OOA approach is utilized to minimize integral squared errors between the actual measured and model-predicted battery voltages under constraints imposed by the model design variables. This approach is applied to a commercial 2.6 Ahr Panasonic LIB, with the performance of the OOA-based model being benchmarked against models developed by means of other optimization algorithms for further validation. Moreover, the robustness of the OOA method is assessed under battery uncertainty conditions or model parameter variation. A sensitivity analysis is performed on the battery model by employing a proposed approach that evaluates the impact of varying each parameter of the battery model by ±5 %, in a sequence that ascends and descends from 0 to 5 %. The single resistance-capacitance model is selected for in-depth validations. Notably, the OOA approach excels in estimating parameters for LIB modeling under both normal and abnormal operating conditions.es_ES
dc.identifier.citationAyedh H. Alqahtani, Hend M. Fahmy, Hany M. Hasanien, Marcos Tostado-Véliz, Abdulaziz Alkuhayli, Francisco Jurado, Parameters estimation and sensitivity analysis of lithium-ion battery model uncertainty based on osprey optimization algorithm, Energy, Volume 304, 2024, 132204, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2024.132204.es_ES
dc.identifier.issn0360-5442es_ES
dc.identifier.other10.1016/j.energy.2024.132204es_ES
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0360544224019789es_ES
dc.identifier.urihttps://hdl.handle.net/10953/3837
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofEnergy [2024]; [304]: [132204]es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectBattery modeles_ES
dc.subjectElectric vehiclees_ES
dc.subjectEnergy storage systemses_ES
dc.subjectLithium-ion batterieses_ES
dc.subjectOsprey optimization algorithmes_ES
dc.titleParameters estimation and sensitivity analysis of lithium-ion battery model uncertainty based on osprey optimization algorithmes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Energy Paper.pdf
Tamaño:
1.45 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones