RUJA: Repositorio Institucional de Producción Científica

 

LiDAR attribute based point cloud labeling using CNNs with 3D Convolution Layers

dc.contributor.authorDíaz-Medina, Miguel
dc.contributor.authorFuertes, José Manuel
dc.contributor.authorSegura-Sánchez, Rafael
dc.contributor.authorLucena, Manuel
dc.contributor.authorOgáyar-Anguita, Carlos J.
dc.date.accessioned2025-01-14T11:50:44Z
dc.date.available2025-01-14T11:50:44Z
dc.date.issued2023-11
dc.description.abstractThe goal of this work is to study how semantic segmentation techniques can be adapted to use LiDAR point clouds in their original format as input. Until now, almost all the methods that have been proposed to apply deep learning models on point clouds keep their focus on generic point clouds, making use only of geometric or color information.The deep learning architecture proposed in this work acts as an alternative to classical convolution models with other convolutional operators, applied to 3D data, such as EdgeConv, which use their nearest neighbors to extract local features. We show the results of an experimentation that reveals the influence of additional LiDAR information channels on the performance of the neural network. Unlike other related works, this one is based in the study of semantic segmentation applied to outdoor environments.es_ES
dc.identifier.citationMiguel Díaz-Medina, José M. Fuertes, Rafael J. Segura-Sánchez, Manuel Lucena, Carlos J. Ogayar-Anguita, LiDAR attribute based point cloud labeling using CNNs with 3D convolution layers, Computers & Geosciences, Volume 180, 2023es_ES
dc.identifier.issn0098-3004es_ES
dc.identifier.otherhttps://doi.org/10.1016/j.cageo.2023.105453es_ES
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0098300423001577?via%3Dihubes_ES
dc.identifier.urihttps://hdl.handle.net/10953/3940
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofComputers & Geoscienceses_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectCNNes_ES
dc.subjectEdgeconves_ES
dc.subjectPoint cloudes_ES
dc.subjectLiDARes_ES
dc.subject.udc681.3es_ES
dc.titleLiDAR attribute based point cloud labeling using CNNs with 3D Convolution Layerses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
compgeo2023.pdf
Tamaño:
457.41 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones