RUJA: Repositorio Institucional de Producción Científica

 

On Optimal Settings for a Family of Runge–Kutta-Based Power-Flow Solvers Suitable for Large-Scale Ill-Conditioned Cases

dc.contributor.authorTostado-Véliz, Marcos
dc.contributor.authorAlharbi, Talal
dc.contributor.authorAlharbi, Hisham
dc.contributor.authorKamel, Salah
dc.contributor.authorJurado-Melguizo, Francisco
dc.date.accessioned2024-07-04T08:29:54Z
dc.date.available2024-07-04T08:29:54Z
dc.date.issued2022-04
dc.description.abstractGrowing demand, interconnection of multiple systems, and difficulty in upgrading existing infrastructures are limiting the capabilities of conventional computational tools employed in power system analysis. Recent studies manifest the importance of efficiently solving well- and ill-conditioned Power-Flow cases in a modern power-system paradigm. While the well-conditioned cases are easily solvable using standard methods, the ill-conditioned ones suppose a challenge for such solvers. In this regard, methods based on the Continuous Newton’s principle have demonstrated their ability to address ill-conditioned cases with acceptable efficiency. This paper demonstrates that the approaches proposed so far do not extract the best numerical properties of such solvers. To fill this gap, an optimization framework is proposed by which the parameters involved in the two-stage Runge–Kutta-based solvers are appropriately set, so that the stability and convergence order of the numerical mapping are maximized. By using the developed optimization technique, three solvers with quadratic, cubic, and 4th order of convergence are developed. The new proposals are tested on a variety of large-scale ill-conditioned cases. Results obtained were promising, outperforming other conventional and robust approaches.es_ES
dc.identifier.citationTostado-Véliz, M.; Alharbi, T.; Alharbi, H.; Kamel, S.; Jurado, F. On Optimal Settings for a Family of Runge–Kutta-Based Power-Flow Solvers Suitable for Large-Scale Ill-Conditioned Cases. Mathematics 2022, 10, 1279. https://doi.org/10.3390/math10081279es_ES
dc.identifier.issn2227-7390es_ES
dc.identifier.other10.3390/math10081279es_ES
dc.identifier.urihttps://www.mdpi.com/2227-7390/10/8/1279es_ES
dc.identifier.urihttps://hdl.handle.net/10953/2969
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.ispartofMathematics [2022]; [10]: [1279]es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectPower-flow analysises_ES
dc.subjectLarge-scale systemses_ES
dc.subjectContinous Newton's methodes_ES
dc.subjectRunge-Kutta formulaes_ES
dc.subjectOrder of convergencees_ES
dc.subjectComputational efficiencyes_ES
dc.subjectNumerical stabilityes_ES
dc.titleOn Optimal Settings for a Family of Runge–Kutta-Based Power-Flow Solvers Suitable for Large-Scale Ill-Conditioned Caseses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
mathematics-10-01279-v3.pdf
Tamaño:
3.23 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones