Departamento de Ingeniería Gráfica, Diseño y Proyectos
URI permanente para esta comunidadhttps://hdl.handle.net/10953/40
En esta Comunidad se recogen los documentos generados por el Departamento de Ingeniería Gráfica, Diseño y Proyectos y que cumplen los requisitos de Copyright para su difusión en acceso abierto.
Si usted es miembro del Departamento y desea depositar un documento puede enviarnos un mensaje.
Examinar
Examinando Departamento de Ingeniería Gráfica, Diseño y Proyectos por Materia "additive manufacturing"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem A New Conformal Cooling Design Procedure for Injection Molding Based on Temperature Clusters and Multidimensional Discrete Models(MDPI, 2020-01-07) Torres-Alba, Abelardo; Mercado-Colmenero, Jorge Manuel; Díaz-Perete, Daniel; Martín-Doñate, CristinaThis paper presents a new method for the automated design of the conformal cooling system for injection molding technology based on a discrete multidimensional model of the plastic part. The algorithm surpasses the current state of the art since it uses as input variables firstly the discrete map of temperatures of the melt plastic flow at the end of the filling phase, and secondly a set of geometrical parameters extracted from the discrete mesh together with technological and functional requirements of cooling in injection molds. In the first phase, the algorithm groups and classifies the discrete temperature of the nodes at the end of the filling phase in geometrical areas called temperature clusters. The topological and rheological information of the clusters along with the geometrical and manufacturing information of the surface mesh remains stored in a multidimensional discrete model of the plastic part. Taking advantage of using genetic evolutionary algorithms and by applying a physical model linked to the cluster specifications the proposed algorithm automatically designs and dimensions all the parameters required for the conformal cooling system. The method presented improves on any conventional cooling system design model since the cooling times obtained are analogous to the cooling times of analytical models, including boundary conditions and ideal solutions not exceeding 5% of relative error in the cases analyzed. The final quality of the plastic parts after the cooling phase meets the minimum criteria and requirements established by the injection industry. As an additional advantage the proposed algorithm allows the validation and dimensioning of the injection mold cooling system automatically, without requiring experienced mold designers with extensive skills in manual computing.Ítem Application of new conformal cooling layouts to the green injection molding of complex slender polymeric parts with high dimensional specifications(MDPI, 2023-01-21) Torres-Alba, Abelardo; Mercado-Colmenero, Jorge Manuel; Caballero-Garcia, Juan de Dios; Martin-Doñate, CristinaEliminating warpage in injection molded polymeric parts is one of the most important problems in the injection molding industry today. This situation is critical in geometries that are particularly susceptible to warping due to their geometric features, as occurs with topologies of great length and slenderness with high changes in thickness. These features are, in these special geometries, impossible to manufacture with traditional technologies meeting the dimensional and sustainable requirements of the industry. The paper presents an innovative green conformal cooling system that is specifically designed for parts with slender geometric shapes, highly susceptible to warping. Additionally, the work presented by the authors investigates the importance of using highly conductive inserts made of steel alloys in combination with the use of additively manufactured conformal channels in reducing influential parameters such as warpage, cooling time and residual stresses in the complex manufacturing of long and slender parts. The results for a real industrial case study indicate that the use of conformal cooling layouts decreases cycle time by 175.1 s - 66% below the current cooling time, the temperature gradient by 78.5% specifically 18.16 ºC, the residual stress by 39.78 MPa or – 81.88 %, and the warpage by 6.9 mm or- 90.5%. In this way, it is possible to achieve a final warping in the complex geometry studied of 0.72 mm under the maximum value required at the industrial level of 1 mm. The resulting values obtained by the researchers present a turning point from which the manufacturing and sustainability in injection molding of said plastic geometries is possible, taking into account that the geometric manufacturing features 30 analyzed, will present a great demand in the coming years in the auto parts manufacturing industry