DIGDP-Artículos
URI permanente para esta colecciónhttps://hdl.handle.net/10953/239
Examinar
Examinando DIGDP-Artículos por Materia "Agustín de Betancourt"
Mostrando 1 - 5 de 5
- Resultados por página
- Opciones de ordenación
Ítem Agustín de Betancourt’s Double-Acting Steam Engine: Analysis through Computer-Aided Engineering(Multidisciplinary Digital Publishing Institute (MDPI), 2018-11-20) Rojas Sola, José Ignacio; De la Morena De la Fuente, EduardoThis article analyses the double-acting steam engine designed by Agustín de Betancourt in 1789 and based on the steam engine of James Watt. Its novelty and scientific interest lies in the fact that from the point of view of industrial archaeology and the study of technical historical heritage there is no worldwide study on this invention, which marked a historic milestone in the design of the steam engines of the Industrial Revolution (1760–1840). This underscores the utility and originality of this research. To this end, a study of computer-aided engineering (CAE) was carried out using the parametric software Autodesk Inventor Professional, consisting of a static analysis using the finite-element method of the 3D CAD model of the invention under real operating conditions. The results have shown that the double-acting steam engine was correctly designed considering that the values of the maximum von Mises stress (188.4 MPa) obtained were taken away from the elastic limit of the material it was made of (cast iron), as well as to the maximum deformations (0.14% with respect to its length) obtained in the same element that presents the maximum stress (opening axle of the high pressure steam valve). Similarly, the maximum displacements (18.74 mm) are located in the mobile counterweights that transmit certain inertia to facilitate the opening and closing of the valves. Finally, if we look at the results of the safety coefficient, whose lowest value was 4.02, we could say that the invention was oversized, following constructive criteria of the time, as there were no resistance tests on materials that would help in the optimization of the design of the invention.Ítem Agustín de Betancourt’s Double-Acting Steam Engine: Geometric Modeling and Virtual Reconstruction(Multidisciplinary Digital Publishing Institute (MDPI), 2018-08-20) Rojas Sola, José Ignacio; Galán Moral, Belén; De la Morena De la Fuente, EduardoIn this paper, the geometric modeling and virtual reconstruction of the double-acting steam engine designed by Agustín de Betancourt in 1789 are shown. For this, the software Autodesk Inventor Professional is used, which has allowed us to obtain its geometric documentation. The material for the research is available on the website of the Betancourt Project of the Canary Orotava Foundation for the History of Science. Almost all parts of the steam engine are drawn on the sheets, but due to the absence of scale and space, it is insufficient to obtain an accurate and reliable 3D CAD (Computer-Aided Design) model. For this reason a graphic scale has been adopted so that the dimensions of the elements are coherent. Also, it has been necessary to make some dimensional and geometric hypotheses, as well as restrictions of movement (degrees of freedom). Geometric modeling has made it possible to know that the system is balanced with the geometric center of the rocker arm shaft, and presents an energetic symmetry whose axis is the support of the parallelogram where the shaft rests: calorific energy to the left and mechanical energy to the right, with the rocker arm acting as a transforming element from one to the otherÍtem Agustin de Betancourt’s Mechanical Dredger in the Port of Kronstadt: Analysis through Computer-Aided Engineering(Multidisciplinary Digital Publishing Institute (MDPI), 2018-08-10) Rojas Sola, José Ignacio; De la Morena De la Fuente, EduardoThis article analyzes the first self-propelled floating dredging machine designed and executed by Agustín de Betancourt in 1810 to dredge the port of Kronstadt (Russia). With this objective, a study of computer-aided engineering (CAE) has been carried out using the parametric software Autodesk Inventor Professional, consisting of a static analysis using the finite element method, of the 3D model which is reliable under operating conditions. The results have shown that the system of inertia drums proposed by Betancourt manages to dissipate the tensions between the different elements, locating the highest stresses in the links of the bucket rosary, specifically at the point of contact between links. Similarly, the maximum displacements and the greatest deformations (always associated with these points of greater stress), are far from reaching the limits of breakage of the material used in its construction, as well as the safety coefficient of the invention, confirming that the mechanism was oversized, as was generally the case at the time. This analysis highlights the talent of the Spanish engineer and his mastery of mechanics, in an invention, the first of its kind worldwide, which served the Russian Empire for many years.Ítem Agustín de Betancourt’s Optical Telegraph: Geometric Modeling and Virtual Reconstruction(Multidisciplinary Digital Publishing Institute (MDPI), 2020-03-09) Rojas Sola, José Ignacio; De la Morena De la Fuente, EduardoThis article shows the geometric modeling and virtual reconstruction of the optical telegraph by Agustín de Betancourt and Abraham Louis Breguet developed at the end of the 18th century. Autodesk Inventor Professional software has been used to obtain the three-dimensional (3D) model of this historical invention and its geometric documentation. The material for the research is available on the website of the Betancourt Project of the Canary Orotava Foundation for the History of Science. Thanks to the three-dimensional modeling performed, it has been possible to explain in detail both its operation and the assembly system of this invention in a coherent way. After carrying out its 3D modeling and functional analysis, it was discovered that the transmissions in the telegraph were not performed by hemp ropes but rather by metal chains with flat links, considerably reducing possible error. Similarly, it has also been found that the use of the gimbal joint facilitated the adaptability of the invention to geographical areas where there was a physical impediment to the alignment of telegraph stations. In addition, it was not now necessary for the telescope frames to be located parallel to the mast frame (frame of the indicator arrow) and therefore they could work in different planes.Ítem The Hay Inclined Plane in Coalbrookdale (Shropshire, England): Geometric Modeling and Virtual Reconstruction(Multidisciplinary Digital Publishing Institute (MDPI), 2019-04-24) Rojas Sola, José Ignacio; De la Morena De la Fuente, EduardoThis article shows the geometric modeling and virtual reconstruction of the inclined plane of Coalbrookdale (Shropshire, England) that was in operation from 1792 to 1894. This historical invention, work of the Englishman William Reynolds, allowed the transportation of boats through channels located at different levels. Autodesk Inventor Professional software has been used to obtain the 3D CAD model of this historical invention and its geometric documentation. The material for the research is available on the website of the Betancourt Project of the Canary Orotava Foundation for the History of Science. Also, because the single sheet does not have a scale, it has been necessary to adopt a graphic scale so that the dimensions of the different elements are coherent. Furthermore, it has been necessary to establish some dimensional, geometric, and movement restrictions (degrees of freedom) so that the set will work properly. One of the main conclusions is that William Reynolds designed a mechanism seeking a longitudinal symmetry so that, from a single continuous movement, the mechanism allows two vessels to ascend and descend simultaneously. This engineering solution facilitated a doubling of the working capacity of the device, as well as a reduction of the energy needs of the system.