Examinando por Autor "Ramadan, Ashraf"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Optimal allocation of renewable DGs using artificial hummingbird algorithm under uncertainty conditions(Elsevier, 2023-03) Ramadan, Ashraf; Ebeed, Mohamed; Kamel, Salah; Ahmed, Emad M.; Tostado-Véliz, MarcosRenewable distributed generators (RDGs) have been widely used in distribution networks for technological, economic, and environmental reasons. The main concern with renewable-based distributed generators, particularly photovoltaic and wind systems, is their intermittent nature, which causes output power to fluctuate, increasing power system uncertainty. As a result, it's critical to think about the resource's uncertainty when deciding where it should go in the grid. The main innovation of this paper is proposing an efficient and the most recent technique for optimal sizing and placement of the RDGs in radial distribution systems considering the uncertainties of the loading and RDGs output powers. Monte-Carlo simulation approach and backward reduction algorithm are used to generate 12 scenarios to model the uncertainties of loading and RDG output power. The artificial hummingbird algorithm (AHA), which is considered the most recent and efficient technique, is used to determine the RDG ratings and placements for a multi-objective function that includes minimizing expected total cost, the expected total emissions, and the expected total voltage deviation, as well as improving expected total voltage stability with considering the uncertainties of loading and RDGs output powers. The proposed technique is tested using an IEEE 33-bus network and an actual distribution system in Portugal (94-bus network). Simulations show that the suggested method effectively solves the problem of optimal DG allocation. In addition of that the expected costs, the emissions, the voltage deviation, are reduced considerably and the voltage stability is also enhanced with inclusion of RDGs in the tested systems.Ítem The Probabilistic Optimal Integration of Renewable Distributed Generators Considering the Time-Varying Load Based on an Artificial Gorilla Troops Optimizer(MDPI, 2022-02) Ramadan, Ashraf; Ebeed, Mohamed; Kamel, Salah; Agwa, Ahmed M.; Tostado-Véliz, MarcosRenewable distributed generators (RDGs) are widely embedded in electrical distribution networks due to their economic, technological, and environmental benefits. However, the main problem with RDGs, photovoltaic generators, and wind turbines, in particular, is that their output powers are constantly changing due to variations in sun irradiation and wind speed, leading to power system uncertainty. Such uncertainties should be taken into account when selecting the optimal allocation of RDGs. The main innovation of this paper is a proposed efficient metaheuristic optimization technique for the sizing and placement of RDGs in radial distribution systems considering the uncertainties of the loading and RDG output power. A Monte Carlo simulation method, along with the backward reduction algorithm, is utilized to create a set of scenarios to model these uncertainties. To find the positions and ratings of the RDGs, the artificial gorilla troops optimizer (GTO), a new efficient strategy that minimizes the total cost, is used to optimize a multiobjective function, total emissions, and total voltage deviations, as well as the total voltage stability boosting. The proposed technique is tested on an IEEE 69-bus network and a real Egyptian distribution grid (East Delta Network (EDN) 30-bus network). The results indicate that the proposed GTO can optimally assign the positions and ratings of RDGs. Moreover, the integration of RDGs into an IEEE 69-bus system can reduce the expected costs, emissions, and voltage deviations by 28.3%, 52.34%, and 66.95%, respectively, and improve voltage stability by 5.6%; in the EDN 30-bus system, these values are enhanced by 25.97%, 51.1%, 67.25%, and 7.7%, respectively.