Please use this identifier to cite or link to this item:
Title: Analysis of Conditioning Factors in Cuenca, Ecuador, for Landslide Susceptibility Maps Generation Employing Machine Learning Methods
Authors: Bravo-López, P.E.
Fernández, T.
Sellers, C.
Delgado, J.
Abstract: Landslides are events that cause great impact in different parts of the world. Their destructive capacity generates loss of life and considerable economic damage. In this research, several Machine Learning (ML) methods were explored to select the most important conditioning factors, in order to evaluate the susceptibility to rotational landslides in a sector surrounding the city of Cuenca (Ecuador) and with them to elaborate landslide susceptibility maps (LSM) by means of ML. The methods implemented to analyze the importance of the conditioning factors checked for multicollinearity (correlation analysis and VIF), and, with an ML-based approach called feature selection, the most important factors were determined based on Classification and Regression Trees (CART), Feature Selection with Random Forests (FS RF), and Boruta and Recursive Feature Elimination (RFE) algorithms. LSMs were implemented with Random Forests (RF) and eXtreme Gradient Boosting (XGBoost) methods considering a landslide inventory updated to 2019 and 15 available conditioning factors (topographic (10), land cover (3), hydrological (1), and geological (1)), from which, based on the results of the aforementioned analyses, the six most important were chosen. The LSM were elaborated considering all available factors and the six most important ones, with the previously mentioned ML methods, and were compared with the result generated by an Artificial Neural Network with resilient backpropagation (ANN rprop-) with six conditioning factors. The results obtained were validated by means of AUC-ROC value and showed a good predictive capacity for all cases, highlighting those obtained with XGBoost, which, in addition to a high AUC value (>0.84), obtained a good degree of coincidence of landslides at high and very high susceptibility levels (>72%). Despite the findings of this research, it is necessary to study in depth the methods applied for the development of future research that will contribute to developing a preventive approach in the study area
Issue Date: 2023
Publisher: MDPI
Citation: Bravo-López, P.; Fernández, T.; Sellers, C.; Delgado, J. 2023. Analysis of Conditioning Factors in Cuenca, Ecuador, for Landslide Susceptibility Maps Generation Employing Machine Learning Methods. Land 2023, 12 (6), 1135
Appears in Collections:DICGF-Artículos

Files in This Item:
File Description SizeFormat 
land-12-01135-v3.pdf5,2 MBAdobe PDFView/Open

This item is protected by original copyright