Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10953/2336
Título: | Enhanced Intrusion Detection with Data Stream Classification and Concept Drift Guided by the Incremental Learning Genetic Programming Combiner |
Autoría: | Shyaa, M.A. Zainol, Z. Abdullah, R. Ambar, M. Alzubaidi, L. Santamaria, J. |
Resumen: | Concept drift (CD) in data streaming scenarios such as networking intrusion detection systems (IDS) refers to the change in the statistical distribution of the data over time. There are five principal variants related to CD: incremental, gradual, recurrent, sudden, and blip. Genetic program- ming combiner (GPC) classification is an effective core candidate for data stream classification for IDS. However, its basic structure relies on the usage of traditional static machine learning models that receive onetime training, limiting its ability to handle CD. To address this issue, we propose an extended variant of the GPC using three main components. First, we replace existing classifiers with alternatives: online sequential extreme learning machine (OSELM), feature adaptive OSELM (FA- OSELM), and knowledge preservation OSELM (KP-OSELM). Second, we add two new components to the GPC, specifically, a data balancing and a classifier update. Third, the coordination between the sub-models produces three novel variants of the GPC: GPC-KOS for KA-OSELM; GPC-FOS for FA-OSELM; and GPC-OS for OSELM. This article presents the first data stream-based classification framework that provides novel strategies for handling CD variants. The experimental results demon- strate that both GPC-KOS and GPC-FOS outperform the traditional GPC and other state-of-the-art methods, and the transfer learning and memory features contribute to the effective handling of most types of CD. Moreover, the application of our incremental variants on real-world datasets (KDD Cup ‘99, CICIDS-2017, CSE-CIC-IDS-2018, and ISCX ‘12) demonstrate improved performance (GPC-FOS in connection with CSE-CIC-IDS-2018 and CICIDS-2017; GPC-KOS in connection with ISCX2012 and KDD Cup ‘99), with maximum accuracy rates of 100% and 98% by GPC-KOS and GPC-FOS, respectively. Additionally, our GPC variants do not show superior performance in handling blip drift. |
Palabras clave: | genetic programming combiner Transfer learning stream data classification |
Fecha: | 4-abr-2023 |
Editorial: | MDPI (Switzerland) |
Citación: | Shyaa, M.A.; Zainol, Z.; Abdullah, R.; Anbar, M.; Alzubaidi, L.; Santamaría, J. Enhanced Intrusion Detection with Data Stream Classification and Concept Drift Guided by the Incremental Learning Genetic Programming Combiner. Sensors 2023, 23, 3736. https://doi.org/10.3390/s23073736 |
Aparece en las colecciones: | DI-Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
sensors-23-03736-v2.pdf | Fichero PDF | 10,08 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons