Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10953/2291
Título: A Spanish Semantic Orientation Approach to Domain Adaptation for Polarity Classification
Autoría: Molina González, M. Dolores
Martínez Cámara, Eugenio
Martín Valdivia, M. Teresa
Ureña López, L. Alfonso
Resumen: One of the problems of opinion mining is the domain adaptation of the sentiment classifiers. There are several approaches to tackling this problem. One of these is the integration of a list of opinion bearing words for the specific domain. This paper presents the generation of several resources for domain adaptation to polarity detection. On the other hand, the lack of resources in languages different from English has orientated our work towards developing sentiment lexicons for polarity classifiers in Spanish. The results show the validity of the new sentiment lexicons, which can be used as part of a polarity classifier.
Palabras clave: Spanish opinion mining
Sentiment lexicon
Domain adaptation
Fecha: jul-2015
Editorial: Elsevier
Citación: Molina-González, M. D., Martínez-Cámara, E., Martín-Valdivia, M. T., & Ureña-López, L. A. (2015). A Spanish semantic orientation approach to domain adaptation for polarity classification. Information Processing & Management, 51(4), 520-531.
Aparece en las colecciones: DI-Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
1-s2.0-S0306457314000910-main.pdf702,74 kBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original