Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10953/2291
Título: | A Spanish Semantic Orientation Approach to Domain Adaptation for Polarity Classification |
Autoría: | Molina González, M. Dolores Martínez Cámara, Eugenio Martín Valdivia, M. Teresa Ureña López, L. Alfonso |
Resumen: | One of the problems of opinion mining is the domain adaptation of the sentiment classifiers. There are several approaches to tackling this problem. One of these is the integration of a list of opinion bearing words for the specific domain. This paper presents the generation of several resources for domain adaptation to polarity detection. On the other hand, the lack of resources in languages different from English has orientated our work towards developing sentiment lexicons for polarity classifiers in Spanish. The results show the validity of the new sentiment lexicons, which can be used as part of a polarity classifier. |
Palabras clave: | Spanish opinion mining Sentiment lexicon Domain adaptation |
Fecha: | jul-2015 |
Editorial: | Elsevier |
Citación: | Molina-González, M. D., Martínez-Cámara, E., Martín-Valdivia, M. T., & Ureña-López, L. A. (2015). A Spanish semantic orientation approach to domain adaptation for polarity classification. Information Processing & Management, 51(4), 520-531. |
Aparece en las colecciones: | DI-Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
1-s2.0-S0306457314000910-main.pdf | 702,74 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons