Veuillez utiliser cette adresse pour citer ce document : https://hdl.handle.net/10953/2184
Titre: Multichannel Blind Sound Source Separation Using Spatial Covariance Model With Level and Time Differences and Nonnegative Matrix Factorization
Auteur(s): Carabias-Orti, Julio José
Nikunen, Joonas
Virtanen, Tuomas
Vera-Candeas, Pedro
Résumé: This paper presents an algorithm for multichannel sound source separation using explicit modeling of level and time differences in source spatial covariance matrices (SCM). We propose a novel SCM model in which the spatial properties are modeled by the weighted sum of direction of arrival (DOA) kernels. DOA kernels are obtained as the combination of phase and level difference covariance matrices representing both time and level differences between microphones for a grid of predefined source directions. The proposed SCM model is combined with the NMF model for the magnitude spectrograms. Opposite to other SCM models in the literature, in this work, source localization is implicitly defined in the model and estimated during the signal factorization. Therefore, no localization preprocessing is required. Parameters are estimated using complex-valued nonnegative matrix factorization with both Euclidean distance and Itakura-Saito divergence. Separation performance of the proposed system is evaluated using the two-channel SiSEC development dataset and four channels signals recorded in a regular room with moderate reverberation. Finally, a comparison to other state-of-the-art methods is performed, showing better achieved separation performance in terms of SIR and perceptual measures.
Mots-clés: Time-frequency analysis
Covariance matrices
Microphones
Direction-of-arrival estimation
Date de publication: 27-avr-2018
metadata.dc.description.sponsorship: Academy of Finland project (Grant Number: 290190)
Editeur: IEEE
Référence bibliographique: J. J. Carabias-Orti, J. Nikunen, T. Virtanen and P. Vera-Candeas, "Multichannel Blind Sound Source Separation Using Spatial Covariance Model With Level and Time Differences and Nonnegative Matrix Factorization," in IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 26, no. 9, pp. 1512-1527, Sept. 2018, doi: 10.1109/TASLP.2018.2830105. keywords: {Time-frequency analysis;Covariance matrices;Microphones;Direction-of-arrival estimation;Kernel;Source separation;Spectrogram;Multichannel source separation;spatial covariance model;interaural time difference;interaural level difference;non-negative matrix factorization;direction of arrival estimation},
Collection(s) :DIT-Artículos

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
level_time_SCM2018.pdfPDF file of the article1,07 MBAdobe PDFVoir/Ouvrir


Ce document est protégé par copyright


Tous les documents dans RUJA sont protégés par copyright, avec tous droits réservés.