Please use this identifier to cite or link to this item: https://hdl.handle.net/10953/2088
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCano Marchal, Pablo-
dc.contributor.authorSanmartin, Chiara-
dc.contributor.authorSatorres Martínez, Silvia-
dc.contributor.authorGómez Ortega, Juan-
dc.contributor.authorMencarelli, Fabio-
dc.contributor.authorGámez García, Javier-
dc.date.accessioned2024-02-05T10:56:01Z-
dc.date.available2024-02-05T10:56:01Z-
dc.date.issued2021-03-25-
dc.identifier.citationCano Marchal, P.; Sanmartin, C.; Satorres Martínez, S.; Gómez Ortega, J.; Mencarelli, F.; Gámez García, J. Prediction of Fruity Aroma Intensity and Defect Presence in Virgin Olive Oil Using an Electronic Nose. Sensors 2021, 21, 2298. https://doi.org/10.3390/s21072298es_ES
dc.identifier.issn1424-8220es_ES
dc.identifier.otherhttps://doi.org/10.3390/s21072298es_ES
dc.identifier.urihttps://doi.org/10.3390/s21072298es_ES
dc.identifier.urihttps://hdl.handle.net/10953/2088-
dc.description.abstractThe organoleptic profile of a Virgin Olive Oil is a key quality parameter that is currently obtained by human sensory panels. The development of an instrumental technique capable of providing information about this profile quickly and online is of great interest. This work employed a general purpose e-nose, in lab conditions, to predict the level of fruity aroma and the presence of defects in Virgin Olive Oils. The raw data provided by the e-nose were used to extract a set of features that fed a regressor to predict the level of fruity aroma and a classifier to detect the presence of defects. The results obtained were a mean validation error of 0.5 units for the prediction of fruity aroma using lasso regression; and 88% accuracy for the defect detection using logistic regression. Finally, the identification of two out of ten specific sensors of the e-nose that can provide successful results paves the way to the design of low-cost specific electronic noses for this application.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.ispartofSensorses_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectvirgin olive oiles_ES
dc.subjectqualityes_ES
dc.subjectelectronic nosees_ES
dc.titlePrediction of Fruity Aroma Intensity and Defect Presence in Virgin Olive Oil Using an Electronic Nosees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
Appears in Collections:DIEA-Artículos

Files in This Item:
File Description SizeFormat 
sensors-21-02298-v2.pdf757,02 kBAdobe PDFView/Open


This item is protected by original copyright