Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10953/2088
Título: Prediction of Fruity Aroma Intensity and Defect Presence in Virgin Olive Oil Using an Electronic Nose
Autoría: Cano Marchal, Pablo
Sanmartin, Chiara
Satorres Martínez, Silvia
Gómez Ortega, Juan
Mencarelli, Fabio
Gámez García, Javier
Resumen: The organoleptic profile of a Virgin Olive Oil is a key quality parameter that is currently obtained by human sensory panels. The development of an instrumental technique capable of providing information about this profile quickly and online is of great interest. This work employed a general purpose e-nose, in lab conditions, to predict the level of fruity aroma and the presence of defects in Virgin Olive Oils. The raw data provided by the e-nose were used to extract a set of features that fed a regressor to predict the level of fruity aroma and a classifier to detect the presence of defects. The results obtained were a mean validation error of 0.5 units for the prediction of fruity aroma using lasso regression; and 88% accuracy for the defect detection using logistic regression. Finally, the identification of two out of ten specific sensors of the e-nose that can provide successful results paves the way to the design of low-cost specific electronic noses for this application.
Palabras clave: virgin olive oil
quality
electronic nose
Fecha: 25-mar-2021
Editorial: MDPI
Citación: Cano Marchal, P.; Sanmartin, C.; Satorres Martínez, S.; Gómez Ortega, J.; Mencarelli, F.; Gámez García, J. Prediction of Fruity Aroma Intensity and Defect Presence in Virgin Olive Oil Using an Electronic Nose. Sensors 2021, 21, 2298. https://doi.org/10.3390/s21072298
Aparece en las colecciones: DIEA-Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
sensors-21-02298-v2.pdf757,02 kBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original