Veuillez utiliser cette adresse pour citer ce document : https://hdl.handle.net/10953/1858
Titre: A new approach to truncated regression for count data
Auteur(s): Martínez-Rodríguez, Ana M.
Conde-Sánchez, Antonio
Olmo-Jiménez, María J.
Résumé: Standard Poisson and negative binomial truncated regression models for count data include the regressors in the mean of the non-truncated distribution. In this paper, a new approach is proposed so that the explanatory variables determine directly the truncated mean. The main advantage is that the regression coefficients in the new models have a straightforward interpretation as the effect of a change in a covariate on the mean of the response variable. A simulation study has been carried out in order to analyze the performance of the proposed truncated regression models versus the standard ones showing that coefficient estimates are now more accurate in the sense that the standard errors are always lower. Also, the simulation study indicates that the estimates obtained with the standard models are biased. An application to real data illustrates the utility of the introduced truncated models in a hurdle model. Although in the example there are slight differences in the results between the two approaches, the proposed one provides a clear interpretation of the coefficient estimates.
Mots-clés: Count data
Hurdle model
Negative binomial regression
Poisson regression
Truncated models
Date de publication: 10-déc-2018
Editeur: Springer
Collection(s) :DEIO-Artículos

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
truncatedreviewed.pdfVersión aceptada473,18 kBAdobe PDFVoir/Ouvrir


Ce document est protégé par copyright


Tous les documents dans RUJA sont protégés par copyright, avec tous droits réservés.