Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10953/1783
Título: Optimization algorithm for learning consistent belief rule-base from examples
Autoría: Liu, Jun
Martínez, Luis
Ruan, Da
Rodríguez, Rosa M.
Calzada, Alberto
Resumen: A belief rule-based inference approach and its corresponding optimization algorithm deal with a rule-base with a belief structure called a belief rule base (BRB) that forms a basis in the inference mechanism. In this paper, a new learning method is proposed based on the given sample data for optimally generating a consistent BRB. The focus is given on the consistency of BRB knowing that the consistency conditions are often violated if the system is generated from real world data. The measurement of BRB inconsistency is incorporated in the objective function of the optimization algorithm. This process is formulated as a non-linear constraint optimization problem and solved using the optimization tool provided in MATLAB. A numerical example is demonstrated the effectiveness of the proposed algorithm.
Palabras clave: Belief rule base
Optimization
Consistency
Learning
Fecha: oct-2011
Patrocinador: research projects TIN2009-08286 y P08-TIC-3548
Editorial: Springer Link
Citación: J. Liu, L. Martinez, D. Ruan et al. Optimization algorithm for learning consistent belief rule-base from examples. J Glob Optim 51, 255–270 (2011)
Aparece en las colecciones: DI-Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
published.pdf545,54 kBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original


Los ítems de RUJA están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.