Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10953/1732
Título: Deep learning methods applied to digital elevation models: state of the art
Autoría: Ruiz-Lendínez, Juan J.
Ariza-López, Francisco J.
Reinoso-Gordo, Juan F.
Ureña-Cámara, Manuel A.
Quesada-Real, Francisco J.
Resumen: Deep Learning (DL) has a wide variety of applications in various thematic domains, including spatial information. Although with limitations, it is also starting to be considered in operations related to Digital Elevation Models (DEMs). This study aims to review the methods of DL applied in the field of altimetric spatial information in general, and DEMs in particular. Void Filling (VF), Super-Resolution (SR), landform classification and hydrography extraction are just some of the operations where traditional methods are being replaced by DL methods. Our review concludes that although these methods have great potential, there are aspects that need to be improved. More appropriate terrain information or algorithm parameterisation are some of the challenges that this methodology still needs to face.
Palabras clave: deep learning
DEMs
void filling
super-resolution
landform classification
Fecha: 2023
Patrocinador: This work has been partially founded by the research project ‘Functional Quality of Digital Elevation Models in Engineering’ of the State Agency Research of Spain. PID2019-106195RB-I00/AEI/10.13039/501100011033.
Editorial: Taylor & Francis
Aparece en las colecciones: DICGF-Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2023_Deep learning methods applied to digital elevation models state of the art.pdf2,41 MBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original