Veuillez utiliser cette adresse pour citer ce document :
Titre: Using partial least squares in archival accounting research: an application to earnings quality measuring
Autre(s) titre(s): Utilización de Mínimos Cuadrados Parciales en la investigación contable de archivo: Aplicación a la medición de la calidad del resultado
Auteur(s): Licerán-Gutiérrez, Cano Rodríguez, Manuel Ana
Résumé: Despite the advantages of Structural Equation Modelling (SEM) over regression models that have contributed to its popularisation in several fields of research in social sciences, it has not been broadly applied in archival accounting research. In this paper, we present a guidance for the application of SEM – and, particularly, the Partial Least Squares (PLS) method – to the (arguably) most recurrent topic on empirical archival accounting research: earnings quality. We highlight several problems that arise in earnings quality measuring, indicating how PLS can help to overcome them. We also run a simulation process whose results show that PLS method outperforms the other approaches even in situations of limited information.
Mots-clés: Structural equation models (SEM)
partial least squares (PLS)
earnings dimensions
earnings quality
Date de publication: 9-mai-2019
metadata.dc.description.sponsorship: PGC2018-096440-B-I00
Editeur: Taylor & Francis Online
Référence bibliographique: Ana Licerán-Gutiérrez & Manuel Cano-Rodríguez (2020) Using partial least squares in archival accounting research: an application to earnings quality measuring, Spanish Journal of Finance and Accounting / Revista Española de Financiación y Contabilidad, 49:2, 143-170, DOI: 10.1080/02102412.2019.1608705
Collection(s) :DEFC-Artículos

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Using partial least squares in archival accounting research an application to earnings quality measuring.pdf3,22 MBAdobe PDFMiniature

Ce document est protégé par copyright

Ce document est autorisé sous une licence de type Licence Creative Commons
Creative Commons