Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuerrero, Julio-
dc.contributor.authorLópez-Ruiz, Francisco F.-
dc.description.abstractPerelomov coherent states for equally spaced, infinite homogeneous waveguide arrays with Euclidean E(2) symmetry are defined, and new resolutions of the identity are constructed in Cartesian and polar coordinates. The key point to construct these resolutions of the identity is the fact that coherent states satisfy Helmholtz equation (in coherent states labels) an thus a non-local scalar product with a convolution kernel can be introduced which is invariant under the Euclidean group. It is also shown that these coherent states for the Eucliean E(2) group have a simple and natural physical realization in these waveguide arrays.es_ES
dc.description.sponsorshipSpanish MICINN through the project PGC2018-097831-B-I00 and Junta de Andalucı́a through the project FEDER/UJA-1381026.es_ES
dc.rightsAtribución-CompartirIgual 3.0 España*
dc.subjectCoherent states,es_ES
dc.subjectEuclidean groupes_ES
dc.subjectwaveguide arrayses_ES
dc.subjectHelmholtz equationes_ES
dc.titleCoherent States for infinite homogeneous waveguide arrayses_ES
Appears in Collections:DM-Artículos

Files in This Item:
File Description SizeFormat 
CoherentStates-E2.pdf282,91 kBAdobe PDFThumbnail

This item is protected by original copyright