Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10953/1132
Título: Coherent States for infinite homogeneous waveguide arrays
Autoría: Guerrero, Julio
López-Ruiz, Francisco F.
Resumen: Perelomov coherent states for equally spaced, infinite homogeneous waveguide arrays with Euclidean E(2) symmetry are defined, and new resolutions of the identity are constructed in Cartesian and polar coordinates. The key point to construct these resolutions of the identity is the fact that coherent states satisfy Helmholtz equation (in coherent states labels) an thus a non-local scalar product with a convolution kernel can be introduced which is invariant under the Euclidean group. It is also shown that these coherent states for the Eucliean E(2) group have a simple and natural physical realization in these waveguide arrays.
Palabras clave: Coherent states,
Euclidean group
waveguide arrays
Helmholtz equation
Fecha de publicación: 2021
Patrocinador: Spanish MICINN through the project PGC2018-097831-B-I00 and Junta de Andalucı́a through the project FEDER/UJA-1381026.
Aparece en las colecciones: DM-Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
CoherentStates-E2.pdf282,91 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original