RUJA: Repositorio Institucional de Producción Científica

 

Toward an Interpretable Continuous Glucose Monitoring Data Modeling

dc.contributor.authorGaitán-Guerro, Juan Francisco
dc.contributor.authorLopez Ruiz, Jose Luis
dc.contributor.authorEspinilla Estévez, Macarena
dc.contributor.authorMartínez Cruz, Macarena
dc.date.accessioned2025-01-27T00:03:22Z
dc.date.available2025-01-27T00:03:22Z
dc.date.issued2024-10
dc.description.abstractThe ongoing global health challenge posed by diabetes necessitates a critical understanding of all generated data streamed from sensors. To address this, our study presents a robust fuzzy-logic-based descriptive analysis of glucose sensor data. This analysis is embedded within the context of an innovative architecture designed to support multipatient monitoring, with the goal of assisting healthcare professionals in their daily tasks and providing essential decision-making tools. Our novel approach captures and interprets complex data patterns from glucose sensors, and also introduces the capability of creating high-quality linguistic summaries, to highlight the most relevant phenomena through the use of natural language (NL). These descriptions facilitate clear communication between healthcare professionals and people with diabetes, enhancing a deeper understanding of intricate data patterns and promoting collaboration in diabetes care. A comparative evaluation between our proposal and the one obtained using GPT-4 underscores the sustainability, effectiveness, and efficiency of our methodology, positioning it as a new standard for empowering diabetic patients in terms of care and prevention, contributing to their progress and well-being.es_ES
dc.identifier.citationGaitán-Guerrero, J. F., López, J. L., Espinilla, M., & Martínez-Cruz, C. (2024). Towards an Interpretable Continuous Glucose Monitoring Data Modeling.es_ES
dc.identifier.issn2327-4662es_ES
dc.identifier.otherhttps://doi.org/10.1109/JIOT.2024.3419260es_ES
dc.identifier.urihttps://hdl.handle.net/10953/4389
dc.language.isoenges_ES
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCes_ES
dc.relation.ispartofIEEE Internet of Things Journal [2024]; [11];[31080-31094]es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectDiabetes, fuzzy logices_ES
dc.subjectGPT-4es_ES
dc.subjectInternet of Medical Thingses_ES
dc.subjectlinguistic descriptions of time serieses_ES
dc.subjectmedical deviceses_ES
dc.titleToward an Interpretable Continuous Glucose Monitoring Data Modelinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2_Q1_2024_Toward_an_Interpretable_Continuous_Glucose_Monitoring_Data_Modeling.pdf
Tamaño:
5.31 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones