RUJA: Repositorio Institucional de Producción Científica

 

Toward an Educative EEG-Based neuroIIR System for Adapting Contents

dc.contributor.authorTorres-García, Alejandro A.
dc.contributor.authorMartínez-Santiago, Fernando
dc.contributor.authorMontejo-Ráez, Arturo
dc.contributor.authorUreña-López, L. Alfonso
dc.date.accessioned2024-02-02T13:32:37Z
dc.date.available2024-02-02T13:32:37Z
dc.date.issued2023-11-03
dc.description.abstractThe pursuit of information is an integral aspect of a learner’s daily routine, often facilitated by information retrieval systems. In this study, we explore the correlation between text complexity and reading comprehension through the lens of neuroinformatics. Our objective is to ascertain whether it is feasible to infer the difficulty level of a text for a learner based on their brain activity, quantified by an electroencephalogram (EEG), during the information retrieval process. To accomplish this, we administered a section of the Woodcock Reading Mastery Test to our participants, evaluating their average reading fluency. Subsequently, the 18 participants under observation read paragraphs of varying complexity and responded to questions pertaining to the text. Utilizing the amassed data, we trained a deep learning model known as EEGNet to autonomously discern the complexity of the text being read, relying on the EEG signals. Furthermore, we conducted a comparison with previous research that employed a distinct characterization approach and employed a random forest algorithm for classification. The outcomes revealed that the present approach (EEGNet) outperformed the former method, achieving an accuracy rate of 80.83% across all subjects, whereas the random forest algorithm achieved a mere 50.28% accuracy. Our findings suggest the potential to classify the EEG signals in accordance with the level of difficulty a student encounters when comprehending the text. We propose several avenues for extending our work into real-time scenarios.es_ES
dc.description.sponsorshipThis work was partially financed by the CEATIC of the Universidad de Jaén, Spain through the “Premios de Invitación de Movilidad CEATIC. Jóvenes Doctores” in 2018 and 2022. This work is also partially funded by the WeLee project [grant 1380939, FEDER Andalucía 2014–2020] of the Junta de Andalucía.es_ES
dc.identifier.citationAlejandro A. Torres-García, Fernando Martínez-Santiago, Arturo Montejo-Ráez & L. Alfonso Ureña-López (2023) Toward an Educative EEG-Based neuroIIR System for Adapting Contents, International Journal of Human–Computer Interaction, DOI: 10.1080/10447318.2023.2275088es_ES
dc.identifier.issn1044-7318es_ES
dc.identifier.otherhttps://doi.org/10.1080/10447318.2023.2275088es_ES
dc.identifier.urihttps://www.tandfonline.com/doi/full/10.1080/10447318.2023.2275088es_ES
dc.identifier.urihttps://hdl.handle.net/10953/1912
dc.language.isoenges_ES
dc.publisherTAYLOR & FRANCIS INCes_ES
dc.relation.ispartofInternational Journal of Human–Computer Interactiones_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectInteractive information retrieval (IIR)es_ES
dc.subjectreading comprehensiones_ES
dc.subjectneurosciencees_ES
dc.subjectBrain-Computer Interfaces (BCI)es_ES
dc.subjectelectroencephalograms (EEG)es_ES
dc.subjecttext complexityes_ES
dc.titleToward an Educative EEG-Based neuroIIR System for Adapting Contentses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2023_EEG.pdf
Tamaño:
737.32 KB
Formato:
Adobe Portable Document Format
Descripción:
Versión aceptada (preprint)

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones